零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 实数的比较大小 > 正文 返回 打印

已知a=3-2,b=2-3,则a______b(填“>”“=”“<”号).-数学

[db:作者]  2019-02-21 00:00:00  零零社区

题文

已知a=

3
-

2
,b=2-

3
,则a______b(填“>”“=”“<”号).
题型:填空题  难度:中档

答案

∵a=

3
-

2
=
1

3
+

2
,b=2-

3
=
1
2+

3

3
+

2
<2+

3

∴a>b.
故答案为>.

据专家权威分析,试题“已知a=3-2,b=2-3,则a______b(填“>”“=”“<”号).-数学-”主要考查你对  实数的比较大小,最简二次根式  等考点的理解。关于这些考点的“档案”如下:

实数的比较大小最简二次根式

考点名称:实数的比较大小

  • 实数的比较大小法则:
    正实数都大于0,负实数都小于0;
    正实数大于一切负实数,两个负实数绝对值大的反而小;
    在数轴上,右边的数要比左边的大。

  • 实数比较大小的具体方法:
    (1)求差法:
    设a,b为任意两个实数,先求出a与b的差,再根据
    “当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
    (2)求商法:
    设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
    “当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
    当a,b(b≠0)为任意两个负实数时,再根据
    “当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
    (3)倒数法:
    设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据
    “当<时,a>b;当>时,a<b。”来比较a与b的大小。
    (4)平方法:
    比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据
    “在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
    也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
    还有估算法、近似值法等。
    两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
    (5)数轴比较法:
    实数与数轴上的点一一对应。
    利用这条性质,将实数的大小关系转化为点的位置关系。
    设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
    如图,点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.

考点名称:最简二次根式

  • 最简二次根式定义:
    被开方数中不含字母,并且被开方数中所有因式的幂的指数都小于2,这样的二次根式称为最简二次根式。
    有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则说这两个代数式互为有理化因式。

  • 最简二次根式同时满足下列三个条件:
    (1)被开方数的因数是整数,因式是整式;
    (2)被开方数中不含有能开的尽的因式;
    (3)被开方数不含分母。

  • 最简二次根式判定:
    ①在二次根式的被开方数中,只要含有分数或小数就不是最简二次根式;
    ②在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

    化二次根式为最简二次根式的方法和步骤:
    ①如果被开方数是分数(包括小数)或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。
    ②如果被开方数是整数或整式,先将他们分解因数或因式,然后把能开得尽方的因数或因式开出来。



http://www.00-edu.com/ks/shuxue/2/18/2019-02-21/664643.html十二生肖
十二星座