零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 实数的比较大小 > 正文 返回 打印

比较大小:23______4.9;6-12______2+12.(填“>”或“<”)-数学

[db:作者]  2019-02-21 00:00:00  零零社区

题文

比较大小:

23
______4.9;

6
-1
2
______

2
+1
2
.(填“>”或“<”)
题型:填空题  难度:中档

答案

(1)∵4.92=24.01,23<24.01,

23
<4.9;

(2)第二个式子中分母相同,那么分子大的那个数就大,

6
-1<

2
+1,

6
-1
2

2
+1
2

故填空答案:(1)<(2)<.

据专家权威分析,试题“比较大小:23______4.9;6-12______2+12.(填“>”或“<”)-数学-魔方..”主要考查你对  实数的比较大小,估算无理数的大小  等考点的理解。关于这些考点的“档案”如下:

实数的比较大小估算无理数的大小

考点名称:实数的比较大小

  • 实数的比较大小法则:
    正实数都大于0,负实数都小于0;
    正实数大于一切负实数,两个负实数绝对值大的反而小;
    在数轴上,右边的数要比左边的大。

  • 实数比较大小的具体方法:
    (1)求差法:
    设a,b为任意两个实数,先求出a与b的差,再根据
    “当a-b<0时,a<b;当a-b=0时,a=b;当a-b>0时,a>b”来比较a与b的大小。
    (2)求商法:
    设a,b(b≠0)为任意两个正实数,先求出a与b的商,再根据
    “当<1时,a<b;当=1时,a=b;当>1时,a>b”来比较a与b的大小;
    当a,b(b≠0)为任意两个负实数时,再根据
    “当<1时,a>b;当=1时,a=b;当>1时,a<b” 来比较a与b的大小。
    (3)倒数法:
    设a,b(a≠0,b≠0)为任意两个正实数,先分别求出a与b的倒数,再根据
    “当<时,a>b;当>时,a<b。”来比较a与b的大小。
    (4)平方法:
    比较含有无理数的式子的大小时,先将要比较的两个数分别平方,再根据
    “在a>0,b>0时,可由a2>b2 得到a>b”比较大小。
    也就是说,两个正数比较大小时,如果一个数的平方比另一个数的平方大,则这个数大于另一个数。
    还有估算法、近似值法等。
    两个实数的大小比较,形式有多种多样,只要我们在实际操作时,有选择性地灵活运用上述方法,一定能方便快捷地取得令人满意的结果。
    (5)数轴比较法:
    实数与数轴上的点一一对应。
    利用这条性质,将实数的大小关系转化为点的位置关系。
    设数轴的正方向指向右方,则数轴上右边的点所表示的数比左边的点所表示的数要大。
    如图,点A表示数a,点B表示数b。因为点A在点B的右边,所以数a大于数b,即a>b.

考点名称:估算无理数的大小

  • 在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。一般情况下从1到达20整数的平方都应牢记。
    例:估算的取值范围。
    解:因为1<3<4,所以
    即:1<<2如果想估算的更精确一些,
    比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.
    因为2.89<3<3.24,
    所以
    所以1.7<<1.8。
    如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

  • 比较无理数大小的几种方法:
    比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
    一、直接法
    直接利用数的大小来进行比较。
    ①、同是正数:
    例:<?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" /> <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" /> 与3的比较
    根据无理数和有理数的联系,被开数大的那个就大。
    因为3=>,所以3>
    ②、 同是负数:
    根据无理数和有理数的联系,及同是负数绝对值大的反而小。
    ③、 一正一负:
    正数大于一切负数。

    二、隐含条件法:
    根据二次根式定义,挖掘隐含条件。
     例:比较的大小。
    因为成立
    所以a-2≧0即a≧2
    所以1-a≦-1
    所以≧0,≦-1
    所以>

    三、同次根式下比较被开方数法:
    例:比较4与5大小
    因为



    四、作差法:
    若a-b>0,则a>b
    例:比较3--2的大小
    因为3---2
    =3--+2
    =5-2
    <=2.5
    所以:5-2>0
    即3->-2

    五、作商法:
    a>0,b>0,若>1,则a>b
    例:比较的大小
    因为÷
    =×
    =<1
    所以:<

    六、找中间量法
    要证明a>b,可找中间量c,转证a>c,c>b
    例:比较的大小
    因为>1,1>
    所以>

    七、平方法:
    a>0,b>0,若a2>b2,则a>b。
    例:比较的大小
    ()2=5+2+11=16+2
    ()2=6+2+10=16+2
    所以:<

    八、倒数法:


    九、有理化法:
    可分母有理化,也可分子有理化。



    十、放缩法:

  • 常用无理数口诀记忆:
    √2≈1.41421:意思意思而已
    √3≈1.7320:一起生鹅蛋
    √5≈2.2360679:两鹅生六蛋(送)六妻舅
    √7≈2.6457513:二妞是我,气我一生
    √8=2√2≈2.82842啊,不啊不是啊
    e≈2.718:粮店吃一把
    π≈3.14159,26535,897,932,384,262:
    山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔



http://www.00-edu.com/ks/shuxue/2/18/2019-02-21/664692.html十二生肖
十二星座