题文
答案
据专家权威分析,试题“下列语句:①-1是1的平方根.②带根号的数都是无理数.③-1的立方根是-..”主要考查你对 无理数的定义,实数的定义,平方根,立方根,算术平方根 等考点的理解。关于这些考点的“档案”如下:
无理数的定义实数的定义平方根立方根算术平方根
考点名称:无理数的定义
无理数的识别:判断一个数是不是无理数,关键就看它能不能写出无限不循环小数,而把无理数写成无限不循环小数,不但麻烦,而且还是我们利用现有知识无法解决的难题。初中常见的无理数有三种类型:(1)含根号且开方开不尽的方根,但切不可认为带根号的数都是无理数;(2)化简后含π的式子;(3)不循环的无限小数。掌握常见无理数的类型有助于识别无理数。
无理数的历史:毕达哥拉斯(Pythagqras,约公元前885年至公元前400年间)是古希腊的大数学家。他证明许多重要的定理,包括后来以他的名字命名的毕达哥拉斯定理(勾股弦定理),即直角三角形两直角边为边长的正方形的面积之和等于以斜边为边长的正方形的面积。毕达哥拉斯将数学知识运用得纯熟之后,觉得不能只满足于用来算题解题,于是他试着从数学领域扩大到哲学,用数的观点去解释一下世界。经过一番刻苦实践,他提出“凡物皆数”的观点,数的元素就是万物的元素,世界是由数组成的,世界上的一切没有不可以用数来表示的,数本身就是世界的秩序。在他死后大约200年,他的门徒们把这种理论加以研究发展,形成了一个强大的毕达哥拉斯学派。公元前500年,古希腊毕达哥拉斯(Pythagoras)学派的弟子希伯索斯(Hippasus)发现了一个惊人的事实,一个正方形的对角线与其一边的长度是不可公度的(若正方形的边长为1,则对角线的长不是一个有理数),这一不可公度性与毕氏学派的“万物皆数”(指有理数)的哲理大相径庭。这一发现使该学派领导人惶恐,认为这将动摇他们在学术界的统治地位,于是极力封锁该真理的流传,希伯索斯被迫流亡他乡,不幸的是,在一条海船上还是遇到毕氏门徒,于是希伯索斯被残忍地扔进了大海。希伯索斯的发现,第一次向人们揭示了有理数系的缺陷,证明了它不能同连续的无限直线等同看待,有理数并没有布满数轴上的点,在数轴上存在着不能用有理数表示的“孔隙”。而这种“孔隙”经后人证明简直多得“不可胜数”。于是,古希腊人把有理数视为连续衔接的那种算术连续统的设想彻底地破灭了。不可公度量的发现连同芝诺悖论一同被称为数学史上的第一次数学危机,对以后2000多年数学的发展产生了深远的影响,促使人们从依靠直觉、经验而转向依靠证明,推动了公理几何学和逻辑学的发展,并且孕育了微积分思想萌芽。不可约的本质是什么?长期以来众说纷纭,得不到正确的解释,两个不可通约的比值也一直认为是不可理喻的数。15世纪意大利著名画家达.芬奇称之为“无理的数”,17世纪德国天文学家开普勒称之为“不可名状”的数。然而真理毕竟是淹没不了的,毕氏学派抹杀真理才是“无理”。人们为了纪念希伯索斯这位为真理而献身的可敬学者,就把不可通约的量取名“无理数”——这就是无理数的由来。
考点名称:实数的定义
实数的性质:1.基本运算:实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。有理数范围内的运算律、运算法则在实数范围内仍适用:交换律:a+b=b+a , ab=ba结合律:(a+b)+c=a+(b+c)分配律:a(b+c)=ab+ac2.实数的相反数:实数的相反数的意义和有理数的相反数的意义相同。实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。3.实数的绝对值:实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|①a为正数时,|a|=a(不变)②a为0时, |a|=0③a为负数时,|a|= a(为a的相反数)(任何数的绝对值都大于或等于0,因为距离没有负的。)4实数的倒数:实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a (a≠0)
实数的分类:(1)按定义分类: 正整数 整数 { 零 负整数
有理数{ }有限小数或无限循环小数 真分数 分数{实数{ 负分数 正无理数 无理数{ }无限不循环小数 负无理数 (2)按性质分类: 正整数 正有理数{ 正实数{ 正分数 正无理数 实数{ 零 负整数 负有理数{ 负实数{ 负分数 负无理数
考点名称:平方根
性质:①一个正数如果有平方根,那么必定有两个,它们互为相反数。显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。
②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“根号a”,a叫做被开方数。
③规定:0的平方根是0。④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。例如:-1的平方根为±1,-9的平方根为±3。⑤平方根包含了算术平方根,算术平方根是平方根中的一种。平方根和算术平方根都只有非负数才有。被开方数是乘方运算里的幂。求平方根可通过逆运算平方来求。开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x
考点名称:立方根
开立方:求一个数a的立方根的运算叫做开立方,其中a叫做被开方数。立方根性质:①正数的立方根是正数;负数的立方根是负数;0的立方根是0。②一般地,如果一个数X的立方等于 a,那么这个数X就叫做a的立方根(也叫做三次方根)。也就是说,如果x3=a,那么x叫做a的立方根。如2是8的立方根,-3分之2是-27分之8的立方根,0是0的立方根。③立方和开立方运算,互为逆运算。④互为相反数的两个数的立方根也是互为相反数。⑤负数不能开平方,但能开立方。⑥任何数(正数、负数、或零)的立方根如果存在的话,必定只有一个。⑦当两个数相等时,这两个数的平方根相等,反之亦然。
笔算开立方的方法:方法一1.将被开立方数的整数部分从个位起向左每三位分为一组;2.根据最左边一组,求得立方根的最高位数;3.用第一组数减去立方根最高位数的立方,在其右边写上第二组数;4.用求得的最高位数的平方的300倍试除上述余数,得出试商;并把求得的最高位数的平方的300倍与试商的积、求得的最高位数的30倍与试商的平方的积和试商的立方写在竖式左边,观察其和是否大于余数,若大于,就减小试商再试,若不大于,试商就是立方根的第二位数;5.用同样方法继续进行下去。方法二第1、2步同上。第三步,商完后,落下余数和后面紧跟着的三位,如果后面没有就把余数后面添上三个0;第四步,将要试商的数代入式子“已商数×要试商数×(10×已商数+要试商数)×30+要商数的立方”,最接近但不超过第三步得到的数者,即为这一位要商的数。然后重复第3、4步,直到除尽。
考点名称:算术平方根