零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 估算无理数的大小 > 正文 返回 打印

根据下表回答下列问题:x28.028.128.228.328.428.528.628.728.8x2784.00789.61795.24800.89806.56812.25817.96823.69829.44(1)795.24的平方根是______,8-数学

[db:作者]  2019-02-24 00:00:00  互联网

题文

根据下表回答下列问题:
x 28.0 28.1 28.2 28.3 28.4 28.5 28.6 28.7 28.8
x2 784.00 789.61 795.24 800.89 806.56 812.25 817.96 823.69 829.44
(1)795.24的平方根是______,

823.7
≈______;
(2)表中与

800
最接近的数是______;
(3)

810
在哪两个数之间?
题型:解答题  难度:中档

答案

(1)∵(±28.2)2=795.24,28.72=823.7;
∴795.24的平方根是±28.2,

823.7
≈ 28.7.
故答案为:±28.2,28.7;

(2)∵与800最接近的数为800.89,28.32=800.89;
∴表中与

800
最接近的数是28.3.
故答案为28.3;

(3)∵810在806.56和812.25之间,28.42=806.56;28.52=812.25,

810
在28.4与28.5之间.

据专家权威分析,试题“根据下表回答下列问题:x28.028.128.228.328.428.528.628...”主要考查你对  估算无理数的大小,平方根,算术平方根  等考点的理解。关于这些考点的“档案”如下:

估算无理数的大小平方根算术平方根

考点名称:估算无理数的大小

  • 在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。一般情况下从1到达20整数的平方都应牢记。
    例:估算的取值范围。
    解:因为1<3<4,所以
    即:1<<2如果想估算的更精确一些,
    比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.
    因为2.89<3<3.24,
    所以
    所以1.7<<1.8。
    如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

  • 比较无理数大小的几种方法:
    比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
    一、直接法
    直接利用数的大小来进行比较。
    ①、同是正数:
    例:<?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" /> <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" /> 与3的比较
    根据无理数和有理数的联系,被开数大的那个就大。
    因为3=>,所以3>
    ②、 同是负数:
    根据无理数和有理数的联系,及同是负数绝对值大的反而小。
    ③、 一正一负:
    正数大于一切负数。

    二、隐含条件法:
    根据二次根式定义,挖掘隐含条件。
     例:比较的大小。
    因为成立
    所以a-2≧0即a≧2
    所以1-a≦-1
    所以≧0,≦-1
    所以>

    三、同次根式下比较被开方数法:
    例:比较4与5大小
    因为



    四、作差法:
    若a-b>0,则a>b
    例:比较3--2的大小
    因为3---2
    =3--+2
    =5-2
    <=2.5
    所以:5-2>0
    即3->-2

    五、作商法:
    a>0,b>0,若>1,则a>b
    例:比较的大小
    因为÷
    =×
    =<1
    所以:<

    六、找中间量法
    要证明a>b,可找中间量c,转证a>c,c>b
    例:比较的大小
    因为>1,1>
    所以>

    七、平方法:
    a>0,b>0,若a2>b2,则a>b。
    例:比较的大小
    ()2=5+2+11=16+2
    ()2=6+2+10=16+2
    所以:<

    八、倒数法:


    九、有理化法:
    可分母有理化,也可分子有理化。



    十、放缩法:

  • 常用无理数口诀记忆:
    √2≈1.41421:意思意思而已
    √3≈1.7320:一起生鹅蛋
    √5≈2.2360679:两鹅生六蛋(送)六妻舅
    √7≈2.6457513:二妞是我,气我一生
    √8=2√2≈2.82842啊,不啊不是啊
    e≈2.718:粮店吃一把
    π≈3.14159,26535,897,932,384,262:
    山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔

考点名称:平方根

  • 平方根定义:
    如果一个数的平方等于a,则这个数叫做a的平方根,如果x2=a,那么x叫做a的平方根,这里a是x的平方,它是一个非负数,即a≥0。
    表示:一个正数有两个平方根,用表示平方根中正的那个,用-表示负的平方根。

  • 性质:
    ①一个正数如果有平方根,那么必定有两个,它们互为相反数。
    显然,如果我们知道了这两个平方根的一个,那么就可以及时的根据相反数的概念得到它的另一个平方根。

    ②如果一个正数x的平方等于a,即x的平方等于a,那么这个正数x叫做a的算术平方根。a
    的算术平方根记为,读作“根号a”,a叫做被开方数。

    ③规定:0的平方根是0。

    ④负数在实数范围内不能开平方,只有在复数范围内,才可以开平方根。
    例如:-1的平方根为±1,-9的平方根为±3。

    ⑤平方根包含了算术平方根,算术平方根是平方根中的一种。
    平方根和算术平方根都只有非负数才有。
    被开方数是乘方运算里的幂。
    求平方根可通过逆运算平方来求。
    开平方:求一个非负数a的平方根的运算叫做开平方,其中a叫做被开方数。
    若x的平方等于a,那么x就叫做a的平方根,即正负根号a=正负x

  • 1 至 20 的平方根:
    利用长式除法可以求平方根。长式除法需要进行加法,减法,乘法,除法等四则运算。一般计算机软件的运算精度小于20位数字,如要计算平方根到100位,四则运算的精度需100位以上。 利用高精度长式除法可以计算出 1 至 20 的 平方根如下:
    =1
    ≈1.414213562373095048801688724209698078569671875376948073176679737990732478462
    ≈1.732050807568877293527446341505872366942805253810380628055806979451933016909
    =2
    ≈2.236067977499789696409173668731276235440618359611525724270897245410520925638
    ≈2.449489742783178098197284074705891391965947480656670128432692567250960377457
    ≈2.645751311064590590501615753639260425710259183082450180368334459201068823230
    ≈2.828427124746190097603377448419396157139343750753896146353359475981464956924
    =3
    ≈3.162277660168379331998893544432718533719555139325216826857504852792594438639
    ≈3.316624790355399849114932736670686683927088545589353597058682146116484642609
    ≈3.464101615137754587054892683011744733885610507620761256111613958903866033818
    ≈3.605551275463989293119221267470495946251296573845246212710453056227166948293
    ≈3.741657386773941385583748732316549301756019807778726946303745467320035156307
    ≈3.872983346207416885179265399782399610832921705291590826587573766113483091937
    ≈4
    ≈4.123105625617660549821409855974077025147199225373620434398633573094954346338
    ≈4.242640687119285146405066172629094235709015626130844219530039213972197435386
    ≈4.358898943540673552236981983859615659137003925232444936890344138159557328203
    ≈4.472135954999579392818347337462552470881236719223051448541794490821041851276

    其中,有两数的根号可借由“口诀”记忆: (意思意思而已), (一妻三儿、一起散热)。

考点名称:算术平方根

  • 概念:
    若一个正数x的平方等于a,即x2=a,则这个正数x为a的算术平方根。
    规定:0的算术平方根是0。
    表示:a的算术平方根记为,读作“根号a”。
    注:只有非负数有算术平方根,而且只有一个算术平方根。

  • 平方根和算术平方根的区别与联系:
    区别:
    (1)定义不同:如果一个数的平方等于a,则这个数叫做a的平方根;非负数a的非负平方根叫做a的算术平方根。
    (2)个数不同:一个正数有两个平方根,它们互为相反数;而一个正数的算术平方根只有一个。
    (3)表示方法不同:正数a的平方根表示为±,正数a的算术平方根表示为
    (4)取值范围不同:正数的算术平方根一定是正数;正数的平方根一正一负,两数互为相反数。
    联系:
    (1)具有包含关系:平方根包含算术平方根,算术平方根是平方根的一种,是正的平方根。
    (2)存在条件相同:只有非负数才有平方根和算术平方根。
    (3)0的平方根,算术平方根均为0。开平方:求一个数的平方根的运算,叫做开平方。
    注:
    (1)平方和开平方的关系是互为逆运算;
    (2)乘方是求根的途径,开平方是一种运算,是求平方根的过程;
    (3)开方的方式是根号形式。

  •  

  • 电脑根号的打法:
    比较通用:
    左手按住换档键(Alt键)不放,接着依次按41420然后松开左手,根号√ ̄就出来了。
    运用Word的域命令在Word中根号:
    首先按住Ctrl+F9,出现{}后,在{}内输入EQ空格\r(开方次数,根号内的表达式),最后按住Shift+F9,就会生成你所要求的根式
    1.平方根
    一个正数的平方根有两个,它们互为相反数。比如 9 的平方根是3,-3。而5的平方根是√5,-√5。规定,零的平方根是0。负数没有平方根。
    2.算术平方根是指一个正数的正的平方根。比如 9 的算术平方根是±3。而5的算术平方根是±√5。规定,零的算术平方根是0。
    算术平方根是定义在平方根基础上,因此负数没有算术平方根。
    3.实数a的算术平方根记作√ ̄a,其中a≥0,根据以上定义有√ ̄a≥0。



http://www.00-edu.com/ks/shuxue/2/20/2019-02-24/671976.html十二生肖
十二星座