零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 估算无理数的大小 > 正文 返回 打印

如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则下列选项中,与点C所表示的数最接近的实数()A.-1B.1C.2D.3-数学

[db:作者]  2019-02-24 00:00:00  互联网

题文

如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则下列选项中,与点C所表示的数最接近的实数(  )
A.-1B.1C.

2
D.

3
题型:单选题  难度:偏易

答案

由数轴的信息知:AF=16,AB=BC=CD=DE=EF=
16
5
=3.2;
∴C点表示的实数为:-5+3.2×2=1.4;
而1.4=

1.42
=

1.96

因此与它最接近的实数应该是

2

故选C.

据专家权威分析,试题“如图,在数轴上有六个点,且AB=BC=CD=DE=EF,则下列选项中,与点..”主要考查你对  估算无理数的大小  等考点的理解。关于这些考点的“档案”如下:

估算无理数的大小

考点名称:估算无理数的大小

  • 在一些题目中我们常常需要估算无理数的取值范围,要想准确地估算出无理数的取值范围需要记住一些常用数的平方。一般情况下从1到达20整数的平方都应牢记。
    例:估算的取值范围。
    解:因为1<3<4,所以
    即:1<<2如果想估算的更精确一些,
    比如说想精确到0.1.可以这样考虑:因为17的平方是289,18的平方是324,所以1.7的平方是2.89,1.8的平方是3.24.
    因为2.89<3<3.24,
    所以
    所以1.7<<1.8。
    如果需要估算的数比较大,可以找几个比较接近的数值验证一下。

  • 比较无理数大小的几种方法:
    比较无理数大小的方法很多,在解题时,要根据所给无理数的特点,选择合适的比较方法。
    一、直接法
    直接利用数的大小来进行比较。
    ①、同是正数:
    例:<?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" /> <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" /> 与3的比较
    根据无理数和有理数的联系,被开数大的那个就大。
    因为3=>,所以3>
    ②、 同是负数:
    根据无理数和有理数的联系,及同是负数绝对值大的反而小。
    ③、 一正一负:
    正数大于一切负数。

    二、隐含条件法:
    根据二次根式定义,挖掘隐含条件。
     例:比较的大小。
    因为成立
    所以a-2≧0即a≧2
    所以1-a≦-1
    所以≧0,≦-1
    所以>

    三、同次根式下比较被开方数法:
    例:比较4与5大小
    因为



    四、作差法:
    若a-b>0,则a>b
    例:比较3--2的大小
    因为3---2
    =3--+2
    =5-2
    <=2.5
    所以:5-2>0
    即3->-2

    五、作商法:
    a>0,b>0,若>1,则a>b
    例:比较的大小
    因为÷
    =×
    =<1
    所以:<

    六、找中间量法
    要证明a>b,可找中间量c,转证a>c,c>b
    例:比较的大小
    因为>1,1>
    所以>

    七、平方法:
    a>0,b>0,若a2>b2,则a>b。
    例:比较的大小
    ()2=5+2+11=16+2
    ()2=6+2+10=16+2
    所以:<

    八、倒数法:


    九、有理化法:
    可分母有理化,也可分子有理化。



    十、放缩法:

  • 常用无理数口诀记忆:
    √2≈1.41421:意思意思而已
    √3≈1.7320:一起生鹅蛋
    √5≈2.2360679:两鹅生六蛋(送)六妻舅
    √7≈2.6457513:二妞是我,气我一生
    √8=2√2≈2.82842啊,不啊不是啊
    e≈2.718:粮店吃一把
    π≈3.14159,26535,897,932,384,262:
    山巅一寺一壶酒,尔乐苦杀吾,把酒吃,酒杀尔,杀不死,尔乐尔



http://www.00-edu.com/ks/shuxue/2/20/2019-02-24/673328.html十二生肖
十二星座