题文
答案
据专家权威分析,试题“下列命题中,正确命题的个数是()①垂直于弦的直径平分这条弦;②平..”主要考查你对 实数的定义,垂直于直径的弦,命题,定理 等考点的理解。关于这些考点的“档案”如下:
实数的定义垂直于直径的弦命题,定理
考点名称:实数的定义
实数的性质:1.基本运算:实数可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数,只有非负实数,才能开偶次方其结果还是实数。有理数范围内的运算律、运算法则在实数范围内仍适用:交换律:a+b=b+a , ab=ba结合律:(a+b)+c=a+(b+c)分配律:a(b+c)=ab+ac2.实数的相反数:实数的相反数的意义和有理数的相反数的意义相同。实数只有符号不同的两个数,它们的和为零,我们就说其中一个是另一个的相反数。实数a的相反数是-a,a和-a在数轴上到原点0的距离相等。3.实数的绝对值:实数的绝对值的意义和有理数的绝对值的意义相同。一个正实数的绝对值等于它本身;一个负实数的绝对值等于它的相反数,0的绝对值是0,实数a的绝对值是 :|a|①a为正数时,|a|=a(不变)②a为0时, |a|=0③a为负数时,|a|= a(为a的相反数)(任何数的绝对值都大于或等于0,因为距离没有负的。)4实数的倒数:实数的倒数与有理数的倒数一样,如果a表示一个非零的实数,那么实数a的倒数是:1/a (a≠0)
实数的分类:(1)按定义分类: 正整数 整数 { 零 负整数
有理数{ }有限小数或无限循环小数 真分数 分数{实数{ 负分数 正无理数 无理数{ }无限不循环小数 负无理数 (2)按性质分类: 正整数 正有理数{ 正实数{ 正分数 正无理数 实数{ 零 负整数 负有理数{ 负实数{ 负分数 负无理数
考点名称:垂直于直径的弦
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。 注:(1)定理中的直径过圆心即可,可以是直径、半径、过圆心的直线或线段; (2)此定理是证明等线段、等角、垂直的主要依据,同时也为圆的有关计算提供了方法和依据。 垂径定理的推论: 推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:
一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦 (不是直径)4.垂直于弦5.经过圆心
考点名称:命题,定理
命题的分类:(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题), 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
四种命题:1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。相互关系:1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。2.四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性。②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
定理结构:定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。通常写作「若条件,则结论」。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。逆定理:若存在某叙述为A→B,其逆叙述就是B→A。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理。若某叙述是定理,其成立的逆叙述就是逆定理。若某叙述和其逆叙述都为真,条件必要且充足。 若某叙述为真,其逆叙述为假,条件充足。 若某叙述为假,其逆叙述为真,条件必要。
常用数学定理:1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率6 、加数+加数=和 和-一个加数=另一个加数7 、被减数-减数=差 被减数-差=减数 差+减数=被减数8 、因数×因数=积 积÷一个因数=另一个因数9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式:1 、正方形 C周长 S面积 a边长 周长=边长×4 ;C=4a;面积=边长×边长; S=a×a2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6; S棱=a×a×6 ;体积=棱长×棱长×棱长; V=a×a×a3、 长方形 C周长 S面积 a边长 周长=(长+宽)×2 ;C=2(a+b) ;面积=长×宽 ;S=ab4 、长方体 V:体积 s:面积 a:长 b: 宽 c:高 表面积(长×宽+长×高+宽×高)×2; S=2(ab+bc+ca);体积=长×宽×高 ;V=abc5、 三角形 s面积 a底 h高 面积=底×高÷2 ;s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高6、 平行四边形 s面积 a底 h高 面积=底×高 s=ah7、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2;s=(a+b)× h÷28、 圆形 S面积 C周长 ∏ d=直径 r=半径周长=直径×∏=2×∏×半径; C=∏d=2∏r ;面积=半径×半径×∏9、 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高;表面积=侧面积+底面积×2 ;体积=底面积×高 ;体积=侧面积÷2×半径10、 圆锥体 v:体积 h:高 s:底面积 r:底面半径 体积=底面积×高÷3