零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 写代数式 > 正文 返回 打印

图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形(1)你认为图b中的阴影部分的正方形的边长等于多少();(2)请用两种不-七年级数学

[db:作者]  2019-02-24 00:00:00  互联网

题文

图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形
(1)你认为图b中的阴影部分的正方形的边长等于多少(    );
(2)请用两种不同的方法求图b中阴影部分的面积。方法1:(    ),方法2:(    );
(3)观察图b你能写出下列三个代数式之间的等量关系吗?
代数式:(m+n)2,(m-n)2,mn:(    )。
(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,则(a-b)2=(    )。我们已经知道,完全平方公式可以用平面几何图形的面积来表示,实际上还有一些代数等式也可以用这种形式表示,请写出图中所表示的代数恒等式(    )。
题型:填空题  难度:中档

答案

(1)m-n;
(2)方法1:,方法2:
(3)
(4),(a+b)(2a+b)=2a2+b2+3ab。

据专家权威分析,试题“图a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小..”主要考查你对  写代数式,完全平方公式  等考点的理解。关于这些考点的“档案”如下:

写代数式完全平方公式

考点名称:写代数式

  • 代数式:
    由数和表示数的字母经有限次加、减、乘、除、乘方和开方等代数运算所得的式子,或含有字母的数学表达式称为代数式。
    数的一切运算规律也适用于代数式。单独的一个数或者一个字母也是代数式。
    例如:ax+2b,-2/3,b^2/26,√a+√2等。
    带有“(≥)” “=”“≠”等符号的不是代数式
    注意:
    1、不包括等于号(=、≡)、不等号(≠、≤、≥、<、>、≮、≯)、约等号≈。
    2、可以有绝对值。例如:|x|,|-2.25| 等。

  • 代数式的书写要求:
    一、数字与数字相乘时,中间的乘号不能用“? ”代替,更不能省略不写。
    如:4乘5,写作4×5,不能写成4?5,更不能写成45
    二、数字与字母相乘时,中间的乘号可以省略不写,并且数字放在字母的前面。
    如: a的5倍,写作:5a 不要写成a5。
    三、两个字母相乘时,中间的乘号可以省略不写,字母无顺序性
    如: a乘b ,写成ab或ba 
    四、当字母和带分数相乘时,要把带分数化成假分数。
    如:3 1/2 乘a  写作:7/2 a    不要写成32/1a 
    五、含有字母的除法运算中,最后结果要写成分数形式,分数线相当于除号。
    如:5除以a  写作5/a    , 不要写成5÷a ; c除以 d写作 ,不要写成 c÷ d
    六、如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式括起来,后面注明单位。
    如:甲同学买了5本书,乙同学买了a 本书,他们一共买了(5+a )本。

  • 代数式的书写格式:
    (1)数与字母,字母与字母相乘,乘号可以省略,也可写成“.”;
    (2)数字要写在前面;
    (3)带分数一定要写成假分数;
    (4)在含有字母的除法中,一般不用“÷”号,而写成分数的形式;
    (5)式子后面有单位时,和差形式的代数式要在单位前把代数式括起来。

  • 代数式:

考点名称:完全平方公式

  • 完全平方公式:
    两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式.为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。
    (a+b)2=a2+2ab+b2
    (a-b)2=a2-2ab+b2

    (1)公式中的a、b可以是单项式,也就可以是多项式。
    (2)不能直接应用公式的,要善于转化变形,运用公式。
    该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。该知识点重点是对完全平方公式的熟记及应用。难点是对公式特征的理解(如对公式中积的一次项系数的理解)。

  • 结构特征:
    1.左边是两个相同的二项式相乘,右边是三项式,是左边二项式中两项的平方和,加上或减去这两项乘积的2倍;
    2.左边两项符号相同时,右边各项全用“+”号连接;
    左边两项符号相反时,右边平方项用“+”号连接后再“-”两项乘积的2倍(注:这里说项时未包括其符号在内);
    3..公式中的字母可以表示具体的数(正数或负数),也可以表示单项式或多项式等数学式.

    记忆口诀:首平方,尾平方,2倍首尾。

  • 使用误解:
    ①漏下了一次项;
    ②混淆公式;
    ③运算结果中符号错误;
    ④变式应用难于掌握。

    注意事项:
    1、左边是一个二项式的完全平方。
    2、右边是二项平方和,加上(或减去)这两项乘积的二倍,a和b可是数,单项式,多项式。
    3、不论是还是,最后一项都是加号,不要因为前面的符号而理所当然的以为下一个符号。

  • 完全平方公式的基本变形:
    (一)、变符号
    例:运用完全平方公式计算:
    (1)(-4x+3y)2
    (2)(-a-b)2
    分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(-a)看成原来公式中的a,将(-b)看成原来公式中的b,即可直接套用公式计算。
    解答:
    (1)16x2-24xy+9y2
    (2)a2+2ab+b2

    (二)、变项数:
    例:计算:(3a+2b+c)2
    分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。
    解答:9a2+12ab+6ac+4b2+4bc+c2

    (三)、变结构
    例:运用公式计算:
    (1)(x+y)(2x+2y)
    (2)(a+b)(-a-b)
    (3)(a-b)(b-a)
    分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即
    (1)(x+y)(2x+2y)=2(x+y)2
    (2) (a+b)(-a-b)=-(a+b)2
    (3) (a-b)(b-a)=-(a-b)2



http://www.00-edu.com/ks/shuxue/2/24/2019-02-24/686634.html十二生肖
十二星座