零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 代数式的求值 > 正文 返回 打印

已知a是负整数,且4(a+1)≥2a+15-2a>1-a,求代数式a2+|2a|+2012的值.-数学

[db:作者]  2019-02-26 00:00:00  互联网

题文

已知a是负整数,且

4(a+1)≥2a+1
5-2a>1-a
,求代数式a2+|2a|+2012的值.
题型:解答题  难度:中档

答案

4(a+1)≥2a+1①
5-2a>1-a②

解不等式①得:a≥-
3
2

解不等式②得:a<4,
故不等式组的解集为:-
3
2
≤a<4,
其负整数解为:a=-1.
当a=-1时,a2+|2a|+2012=(-1)2+|2×(-1)|+2012=1+2+2012=2015.

据专家权威分析,试题“已知a是负整数,且4(a+1)≥2a+15-2a>1-a,求代数式a2+|2a|+2012的..”主要考查你对  代数式的求值 ,一元一次不等式组的解法  等考点的理解。关于这些考点的“档案”如下:

代数式的求值 一元一次不等式组的解法

考点名称:代数式的求值

  • 代数式的值:
    用数值代替代数式的字母,按照代数式指明的运算,计算出结果才,叫做代数式的值。

  • 代数式求值的步骤:
    (1)代入;
    (2)计算。
    常用的代入方法有直接代入法与整体代入法。
    注:代数式的值的取值条件:
    (1)不能使代数式失去意义;
    (2)不能使所表示的实际问题失去意义。

  • 求代数式的值的方法:
    ①给出代数式中所有字母的值,该类题一般是先化简代数式,再代入字母的值,然后计算。
    ②给出代数式中所含几个字母之间的关系,不直接给出字母的值,该类题一般是把所要求的代数式通过恒等变形,转化成为用已知关系表示的形式。
    ③在给定条件中,字母之间的关系不明显,字母的值隐含在题设条件中,该类题应先由题设条件求出字母的值,再求代数式的值。

考点名称:一元一次不等式组的解法

  • 一元一次不等式组解集:
    一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
    注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
    例如:
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有非零实数。
    解法:求不等式组的解集的过程,叫做解不等式组。

  • 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
    一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b)

  • 一元一次不等式组的解答步骤:
    (1)分别求出不等式组中各个不等式的解集;
    (2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
    (3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。

    解法诀窍:
    同大取大 ;
    例如:
    X>-1
    X>2
    不等式组的解集是X>2

    同小取小;
    例如:
    X<-4
    X<-6
    不等式组的解集是X<-6

    大小小大中间找;
    例如,
    x<2,x>1,不等式组的解集是1<x<2

    大大小小不用找
    例如,
    x<2,x>3,不等式组无解

  • 一元一次不等式组的整数解:
    一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
    求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
    例如



    所以原不等式的整数解为1,2。



http://www.00-edu.com/ks/shuxue/2/25/2019-02-26/698459.html十二生肖
十二星座