零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 单项式 > 正文 返回 打印

若单项式与的和与差仍是单项式,求m-2n的值。-八年级数学

[db:作者]  2019-02-26 00:00:00  零零社区

题文

若单项式的和与差仍是单项式,求m-2n的值。
题型:解答题  难度:中档

答案

解:

据专家权威分析,试题“若单项式与的和与差仍是单项式,求m-2n的值。-八年级数学-”主要考查你对  单项式,二元一次方程的应用  等考点的理解。关于这些考点的“档案”如下:

单项式二元一次方程的应用

考点名称:单项式

  • 单项式:
    表示数或字母的积的式子叫做单项式。
    单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。任何一个非零数的零次方等于1。

  • 单项式性质:
    1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。
    分母中不含字母(单项式是整式,而不是分式)
    a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。
    2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。
    3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。
    4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。
    5.如果一个单项式,只含有数字因数,那么它的次数为0。
    6.0也是数字,也属于单项式。
    7.有分数也属于单项式。

    单项式的次数与系数:
    1.单项式是字母与数的乘积。
    单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
    单项式的系数:单项式中的数字因数。
    单项式是几次,就叫做几次单项式。
    如:2xy的系数是2;-5zy 的系数是-5
    字母t的指数是1,100t是一次单项式;

    在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。
    如:xy ,3,a z,ab,b ...... 都是单项式。

    单项式书写规则:
    1.单项式表示数与字母相乘时,通常把数写在前面;
    2.乘号可以省略为点或不写;
    3.除法的式子可以写成分数式;
    4.带分数与字母相乘,带分数要化为假分数
    5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)
    6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。
    7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)
    8.单独的数“0”的系数是零,次数也是零。
    9.常数的系数是它本身,次数为零。

  • 单项式的运算法则:
    加减法则
    单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。
    例如:3a+4a=7a,9a-2a=7a等。
    同时还要运用到去括号法则和添括号法则。

    乘法法则
    单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式
    例如:3a·4a=12a^2

    除法法则
    同底数幂相除,底数不变,指数相减。
    例如:9a10÷3a5=3a5

考点名称:二元一次方程的应用

  • 定义的应用,判定一个方程是否是二元一次方程;求方程的未知系数及解应用题。

  • 列二元一次方程组解应用题的一般步骤:
    可概括为“审、找、列、解、答”五步,即:
    (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
    (2)找:找出能够表示题意两个相等关系;
    (3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;
    (4)解:解这个方程组,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.

    常见问题及解决:
    一、数字问题:
    例:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
    分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系表示为:
    因此,所求的两位数是14.
    点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.

    二、利润问题:
    商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.
    利润的计算一般有两种方法:
    ①利润=卖出价-进价;
    ②利润=进价×利润率(盈利百分数)。
    特别注意“利润”和“利润率”是不同的两个概念。

    三、配套问题:
    产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:
    ①“二合一”问题:如果a件甲产品和b件乙产品配成一套,
    那么甲产品数的b倍等于乙产品数的a倍,即:
    ②“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,
    那么各种产品数应满足的相等关系式是:

    四、行程问题:
    “相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:
    “相向而遇”时,两者所走的路程之和等于它们原来的距离;
    “同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离。

    五、货运问题:
    由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等。

    六、工程问题:
    工程问题与行程问题相类似,关键要抓好三个基本量的关系,即
    “工作量=工作时间×工作效率”以及它们的变式:
    “工作时间=工作量÷工作效率,
    工作效率=工作量÷工作时间”。
    其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量。



http://www.00-edu.com/ks/shuxue/2/28/2019-02-26/704932.html十二生肖
十二星座