题文
答案
据专家权威分析,试题“若单项式3a2b2n+1与-2a1+mb2c的次数相同,问:x=m-2n是否为方程2x..”主要考查你对 单项式,一元一次方程的解法 等考点的理解。关于这些考点的“档案”如下:
单项式一元一次方程的解法
考点名称:单项式
单项式性质:1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。分母中不含字母(单项式是整式,而不是分式)a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。5.如果一个单项式,只含有数字因数,那么它的次数为0。6.0也是数字,也属于单项式。7.有分数也属于单项式。单项式的次数与系数:1.单项式是字母与数的乘积。单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式的系数:单项式中的数字因数。单项式是几次,就叫做几次单项式。如:2xy的系数是2;-5zy 的系数是-5字母t的指数是1,100t是一次单项式;在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。如:xy ,3,a z,ab,b ...... 都是单项式。单项式书写规则:1.单项式表示数与字母相乘时,通常把数写在前面;2.乘号可以省略为点或不写;3.除法的式子可以写成分数式;4.带分数与字母相乘,带分数要化为假分数5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)8.单独的数“0”的系数是零,次数也是零。9.常数的系数是它本身,次数为零。
单项式的运算法则:加减法则单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。例如:3a+4a=7a,9a-2a=7a等。同时还要运用到去括号法则和添括号法则。乘法法则单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例如:3a·4a=12a^2除法法则同底数幂相除,底数不变,指数相减。例如:9a10÷3a5=3a5
考点名称:一元一次方程的解法
解一元一次方程的步骤: 一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘); 依据:等式的性质2 ⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律 ⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边) 依据:等式的性质1 ⒋ 合并同类项:把方程化成ax=b(a≠0)的形式; 依据:乘法分配律(逆用乘法分配律) ⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解 依据:等式的性质2
方程的同解原理 :如果两个方程的解相同,那么这两个方程叫做同解方程。⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法: ⒈认真 审题(审题) ⒉分析已知和未知量 ⒊找一个合适的 等量关系 ⒋设一个恰当的未知数 ⒌列出合理的方程 (列式) ⒍解出方程(解题) ⒎ 检验 ⒏写出答案(作答)
例:ax=b(a、b为常数)? 解:当a≠0,b=0时, ax=0 x=0(此种情况与下一种一样) 当a≠0时,x=b/a。 当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程) 当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程) 例: (3x+1)/2-2=(3x-2)/10-(2x+3)/5
去分母(方程两边同乘各分母的最小 公倍数)得: 5(3x+1)-10×2=(3x-2)-2(2x+3) 去括号得: 15x+5-20=3x-2-4x-6 移项得: 15x-3x+4x=-2-6-5+20 合并同类项得: 16x=7 系数化为1得: x=7/16。
注:字母公式(等式的性质) a=b a+c=b+c a-c=b-c (等式的性质1) a=b ac=bc a=bc(c≠0)= a÷c=b÷c(等式的性质2) 检验 算出后需检验的。 求根公式 由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。 但对于标准形式下的一元一次方程 ax+b=0 可得出求根公式x=-(b/a)