题文
[ ]
答案
据专家权威分析,试题“下列说法正确的是[]A、“作线段CD=AB”是一个命题B、三角形的三条内..”主要考查你对 同类项,三角形的内心、外心、中心、重心,命题,定理 等考点的理解。关于这些考点的“档案”如下:
同类项三角形的内心、外心、中心、重心命题,定理
考点名称:同类项
同类项性质:(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;(3)所有的常数项都是同类项。 例如:1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项-24ab与152ab是同类项 【同类项与字母前的系数大小无关】2. -7和29也是同类项【所有常数项都是同类项。】3. -a和a也是同类项【-a的系数是-1 a的系数是1 】4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】5.(3+k)与(3—k)是同类项。
合并同类项:多项式中的同类项可以合并,叫做合并同类项。合并同类项步骤:(1)准确的找出同类项。(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。(3)写出合并后的结果。在掌握合并同类项时注意:1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.2.不要漏掉不能合并的项。3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。合并同类项的关键:正确判断同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。合并同类项的理论依据:其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。例1.合并同类项-8ab+6ab-3ab分析:同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。解答:原式=(-8+6-3)ab=-5 ab。例2.合并同类项-xy+3-2xy+5xy-4xy-7分析:在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。解答:原式=(-xy+5xy)+(-2xy-4xy)+(3-7)=-2xy-4例3.合并同类项并解答:2y-5y+y+4y-3y-2,其中y=1/2=(2+1-3)y+(-5+4)y-2=0+(-y)-2当y=1/2时,原式=(-1/2)-2=-5/2在合并同类项时,要注意是常数项也是同类项。
考点名称:三角形的内心、外心、中心、重心
考点名称:命题,定理
命题的分类:(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题), 所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。 所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
四种命题:1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。相互关系:1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。2.四种命题的真假关系:①两个命题互为逆否命题,它们有相同的真假性。②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
定理结构:定理一般都有一个设定——一大堆条件。然后它有结论——一个在条件下成立的数学叙述。通常写作「若条件,则结论」。用符号逻辑来写就是条件→结论。而当中的证明不视为定理的成分。逆定理:若存在某叙述为A→B,其逆叙述就是B→A。逆叙述成立的情况是A←→B,否则通常都是倒果为因,不合常理。若某叙述是定理,其成立的逆叙述就是逆定理。若某叙述和其逆叙述都为真,条件必要且充足。 若某叙述为真,其逆叙述为假,条件充足。 若某叙述为假,其逆叙述为真,条件必要。
常用数学定理:1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数2、1倍数×倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价5 、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率6 、加数+加数=和 和-一个加数=另一个加数7 、被减数-减数=差 被减数-差=减数 差+减数=被减数8 、因数×因数=积 积÷一个因数=另一个因数9、 被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式:1 、正方形 C周长 S面积 a边长 周长=边长×4 ;C=4a;面积=边长×边长; S=a×a2 、正方体 V:体积 a:棱长 表面积=棱长×棱长×6; S棱=a×a×6 ;体积=棱长×棱长×棱长; V=a×a×a3、 长方形 C周长 S面积 a边长 周长=(长+宽)×2 ;C=2(a+b) ;面积=长×宽 ;S=ab4 、长方体 V:体积 s:面积 a:长 b: 宽 c:高 表面积(长×宽+长×高+宽×高)×2; S=2(ab+bc+ca);体积=长×宽×高 ;V=abc5、 三角形 s面积 a底 h高 面积=底×高÷2 ;s=ah÷2 三角形高=面积 ×2÷底 三角形底=面积 ×2÷高6、 平行四边形 s面积 a底 h高 面积=底×高 s=ah7、 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)×高÷2;s=(a+b)× h÷28、 圆形 S面积 C周长 ∏ d=直径 r=半径周长=直径×∏=2×∏×半径; C=∏d=2∏r ;面积=半径×半径×∏9、 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 侧面积=底面周长×高;表面积=侧面积+底面积×2 ;体积=底面积×高 ;体积=侧面积÷2×半径10、 圆锥体 v:体积 h:高 s:底面积 r:底面半径 体积=底面积×高÷3