题文
答案
据专家权威分析,试题“如图,在正方形ABC1D1中,AB=1,连接AC1,以AC1为边作第二个正方..”主要考查你对 探索规律,正方形,正方形的性质,正方形的判定 等考点的理解。关于这些考点的“档案”如下:
探索规律正方形,正方形的性质,正方形的判定
考点名称:探索规律
探索规律题题型和解题思路:1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;探索结论型题的一般解题思路是:(1)从特殊情形入手,发现一般性的结论;(2)在一般的情况下,证明猜想的正确性;(3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。探索存在型题的结论只有两种可能:存在或不存在;存在型问题的解题步骤是:①假设存在;②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。 解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。
考点名称:正方形,正方形的性质,正方形的判定
正方形的性质:1、边:两组对边分别平行;四条边都相等;相邻边互相垂直2、内角:四个角都是90°;3、对角线:对角线互相垂直;对角线相等且互相平分;每条对角线平分一组对角;4、对称性:既是中心对称图形,又是轴对称图形(有四条对称轴);5、正方形具有平行四边形、菱形、矩形的一切性质;6、特殊性质:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把正方形分成四个全等的等腰直角三角形;7、在正方形里面画一个最大的圆,该圆的面积约是正方形面积的78.5%;正方形外接圆面积大约是正方形面积的157%。8、正方形是特殊的长方形。
正方形的判定:判定一个四边形为正方形的一般顺序如下:先证明它是平行四边形,再证明它是菱形(或矩形),最后证明它是矩形(或菱形)。 1:对角线相等的菱形是正方形。2:有一个角为直角的菱形是正方形。3:对角线互相垂直的矩形是正方形。4:一组邻边相等的矩形是正方形。5:一组邻边相等且有一个角是直角的平行四边形是正方形。6:对角线互相垂直且相等的平行四边形是正方形。7:对角线相等且互相垂直平分的四边形是正方形。8:一组邻边相等,有三个角是直角的四边形是正方形。9:既是菱形又是矩形的四边形是正方形。有关计算公式:若S为正方形的面积,C为正方形的周长,a为正方形的边长,则正方形面积计算公式:S =a×a(即a的2次方或a的平方),或S=对角线×对角线÷2;正方形周长计算公式: C=4a 。S正方形=。(正方形边长为a,对角线长为b)