题文
答案
据专家权威分析,试题“若x2+mx+9是关于x的完全平方式,则m=_____-七年级数学-”主要考查你对 整式的定义,整式的加减,单项式,多项式 ,同类项 等考点的理解。关于这些考点的“档案”如下:
整式的定义整式的加减单项式多项式 同类项
考点名称:整式的定义
整式的计算:1. 单项式乘以单项式,系数与系数相乘的积作为积的系数,相同字母底数不变,指数相加,单独的字母不变,仍作为积的一个因式。2.单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所有的项相加。3.先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加。4.数字与数字相除,相同字母的进行相除,对于只在被除数中拥有的字母包括字母的指数一起作为商的一个因式。5.多项式除以单项式,先把这个多项式分别除以这个单项式,再把所得的商相加 。6.多项式除以多项式的一般步骤:多项式除以多项式,一般用竖式进行演算。 (1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐. (2)用除式的第一项去除被除式的第一项,得商式的第一项. (3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),从被除式中减去这个积. (4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式 如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除. (5)如果被除式能分解因式且有因式与除式中的因式相同的,可以把被除式、除式分解因式。最重要的是必注意各项系数的符号。
整式的四则运算:整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。 加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。 1. 整式的加减 合并同类项是重点,也是难点。合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,多项式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。 2. 整式的乘除 重点是整式的乘除,尤其是其中的乘法公式。乘法公式的结构特征以及公式中的字母的广泛含义,学生不易掌握。因此,乘法公式的灵活运用是难点,添括号(或去括号)时,括号中符号的处理是另一个难点。添括号(或去括号)是对多项式的变形,要根据添括号(或去括号)的法则进行。在整式的乘除中,单项式的乘除是关键,这是因为,一般多项式的乘除都要“转化”为单项式的乘除。 整式四则运算的主要题型有: (1)单项式的四则运算 此类题目多以选择题和应用题的形式出现,其特点是考查单项式的四则运算。 (2)单项式与多项式的运算 此类题目多以解答题的形式出现,技巧性强,其特点为考查单项式与多项式的四则运算。
考点名称:整式的加减
考点名称:单项式
单项式性质:1.分母含有字母的式子不属于单项式。因为单项式属于整式,而分母含有未知数的式子是分式。例如:1/x不是单项式。分母中不含字母(单项式是整式,而不是分式)a,-5,X,2XY,都是单项式,而0.5m+n,不是单项式。2.单独的一个数字或字母也是单项式。例如:1和x2y也是单项式。3.任意一个字母和数字的积的形式的代数式(除法中有:除以一个数等于乘这个数的倒数)。4.如果一个单项式,只含有字母因数,如果是正数的单项式系数为1,如果是负数的单项式系数为-1。5.如果一个单项式,只含有数字因数,那么它的次数为0。6.0也是数字,也属于单项式。7.有分数也属于单项式。单项式的次数与系数:1.单项式是字母与数的乘积。单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。单项式的系数:单项式中的数字因数。单项式是几次,就叫做几次单项式。如:2xy的系数是2;-5zy 的系数是-5字母t的指数是1,100t是一次单项式;在单项式vt中,字母v与t的指数的和是2,vt是二次单项式。如:xy ,3,a z,ab,b ...... 都是单项式。单项式书写规则:1.单项式表示数与字母相乘时,通常把数写在前面;2.乘号可以省略为点或不写;3.除法的式子可以写成分数式;4.带分数与字母相乘,带分数要化为假分数5.π是常数,因此也可以作为系数。(“π”是特指的数,不是字母,读pài。)6.当一个单项式的系数是1或-1时,“1”通常省略不写,如[(-1)ab ]写成[ -ab ]等。7.在单项式中字母不可以做分母,分子可以。字母不能在分母中(因为这样为分式,不为单项式)8.单独的数“0”的系数是零,次数也是零。9.常数的系数是它本身,次数为零。
单项式的运算法则:加减法则单项式加减即合并同类项,也就是合并前各同类项系数的和,字母不变。例如:3a+4a=7a,9a-2a=7a等。同时还要运用到去括号法则和添括号法则。乘法法则单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式例如:3a·4a=12a^2除法法则同底数幂相除,底数不变,指数相减。例如:9a10÷3a5=3a5
考点名称:多项式
多项式的运算:1.加法与乘法: 多项式的加法:是指多项式中同类项的系数相加,字母保持不变(即合并同类项)。多项式的乘法,是指把一个多项式中的每个单项式与另一个多项式中的每个单项式相乘之后合并同类项。例如:也可以用矩阵乘法来进行:2.多项式除法:多项式的除法与整数的除法类似。(1)把被除式、除式按某个字母作降幂排列,并把所缺的项用零补齐.(2)用被除式的第一项去除除式的第一项,得商式的第一项.(3)用商式的第一项去乘除式,把积写在被除式下面(同类项对齐),消去相等项,把不相等的项结合起来.(4)把减得的差当作新的被除式,再按照上面的方法继续演算,直到余式为零或余式的次数低于除式的次数时为止.被除式=除式×商式+余式如果一个多项式除以另一个多项式,余式为零,就说这个多项式能被另一个多项式整除
考点名称:同类项
同类项性质:(1)两个单项式是同类项的条件有两个:一是含有相同的字母;而是相同字母的指数分别相等;(2)同类项与系数无关,与字母的排列顺序无关,只与字母及字母的指数有关;(3)所有的常数项都是同类项。 例如:1. 多项式3a-24ab-5a-7—a+152ab+29+a中3a与-5a是同类项-24ab与152ab是同类项 【同类项与字母前的系数大小无关】2. -7和29也是同类项【所有常数项都是同类项。】3. -a和a也是同类项【-a的系数是-1 a的系数是1 】4. 2ab和2ba也是同类项【同类项与系数和字母的顺序无关】5.(3+k)与(3—k)是同类项。
合并同类项:多项式中的同类项可以合并,叫做合并同类项。合并同类项步骤:(1)准确的找出同类项。(2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。(3)写出合并后的结果。在掌握合并同类项时注意:1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.2.不要漏掉不能合并的项。3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。合并同类项的关键:正确判断同类项。合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。合并同类项的理论依据:其实,合并同类项法则是有其理论依据的。它所依据的就是乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。例1.合并同类项-8ab+6ab-3ab分析:同类项合并时,把同类项的系数加减,字母和各字母的指数都不改变。解答:原式=(-8+6-3)ab=-5 ab。例2.合并同类项-xy+3-2xy+5xy-4xy-7分析:在一个多项式中,往往含有几个不同的单项式,可运用加法交换律及合并同类项法则进行合并。注意不要把某些项漏合或漏写。解答:原式=(-xy+5xy)+(-2xy-4xy)+(3-7)=-2xy-4例3.合并同类项并解答:2y-5y+y+4y-3y-2,其中y=1/2=(2+1-3)y+(-5+4)y-2=0+(-y)-2当y=1/2时,原式=(-1/2)-2=-5/2在合并同类项时,要注意是常数项也是同类项。