题文
答案
据专家权威分析,试题“如图平行四边形ABCD的对角线AC与BD相交于点O,AB=7,AC=10,△ABO..”主要考查你对 一元一次方程的解法,平行四边形的性质 等考点的理解。关于这些考点的“档案”如下:
一元一次方程的解法平行四边形的性质
考点名称:一元一次方程的解法
解一元一次方程的步骤: 一般解法:⒈去分母:在方程两边都乘以各分母的最小公倍数(不含分母的项也要乘); 依据:等式的性质2 ⒉ 去括号:一般先去小括号,再去中括号,最后去大括号,可根据 乘法分配律(记住如括号外有减号或除号的话一定要变号) 依据:乘法分配律 ⒊ 移项:把方程中含有 未知数的项都移到方程的一边(一般是含有未知数的项移到方程左边,而把常数项移到右边) 依据:等式的性质1 ⒋ 合并同类项:把方程化成ax=b(a≠0)的形式; 依据:乘法分配律(逆用乘法分配律) ⒌ 系数化为1:在方程两边都除以未知数的系数a,得到方程的解 依据:等式的性质2
方程的同解原理 :如果两个方程的解相同,那么这两个方程叫做同解方程。⒈方程的两边都加或减同一个数或同一个等式所得的方程与原方程是同解方程。⒉方程的两边同乘或同除同一个不为0的数所得的方程与原方程是同解方程。
做一元一次方程应用题的重要方法: ⒈认真 审题(审题) ⒉分析已知和未知量 ⒊找一个合适的 等量关系 ⒋设一个恰当的未知数 ⒌列出合理的方程 (列式) ⒍解出方程(解题) ⒎ 检验 ⒏写出答案(作答)
例:ax=b(a、b为常数)? 解:当a≠0,b=0时, ax=0 x=0(此种情况与下一种一样) 当a≠0时,x=b/a。 当a=0,b=0时,方程有无数个解(注意:这种情况不属于一元一次方程,而属于恒等方程) 当a=0,b≠0时,方程无解(此种情况也不属于一元一次方程) 例: (3x+1)/2-2=(3x-2)/10-(2x+3)/5
去分母(方程两边同乘各分母的最小 公倍数)得: 5(3x+1)-10×2=(3x-2)-2(2x+3) 去括号得: 15x+5-20=3x-2-4x-6 移项得: 15x-3x+4x=-2-6-5+20 合并同类项得: 16x=7 系数化为1得: x=7/16。
注:字母公式(等式的性质) a=b a+c=b+c a-c=b-c (等式的性质1) a=b ac=bc a=bc(c≠0)= a÷c=b÷c(等式的性质2) 检验 算出后需检验的。 求根公式 由于一元一次方程是 基本方程,教科书上的解法只有上述的方法。 但对于标准形式下的一元一次方程 ax+b=0 可得出求根公式x=-(b/a)
考点名称:平行四边形的性质
平行四边形的性质:主要性质(矩形、菱形、正方形都是特殊的平行四边形。)(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。(简述为“平行四边形的两组对边分别相等”)(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。(简述为“平行四边形的两组对角分别相等”)(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补(简述为“平行四边形的邻角互补”)(4)夹在两条平行线间的平行线段相等。(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。(简述为“平行四边形的对角线互相平分”)(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)(7)平行四边形的面积等于底和高的积。(可视为矩形)(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。(9)平行四边形是中心对称图形,对称中心是两对角线的交点.(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。(13)平行四边形对角线把平行四边形面积分成四等分。(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。