题文
答案
据专家权威分析,试题“某工厂计划生产两种产品共10件,其生产成本和利润如下表:(1)若工..”主要考查你对 一元一次方程的应用,一元一次不等式组的应用 等考点的理解。关于这些考点的“档案”如下:
一元一次方程的应用一元一次不等式组的应用
考点名称:一元一次方程的应用
一元一次方程应用题型及技巧:列方程解应用题的几种常见类型及解题技巧: (1)和差倍分问题: ①倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。②多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。③基本数量关系:增长量=原有量×增长率,现在量=原有量+增长量。 (2)行程问题: 基本数量关系:路程=速度×时间,时间=路程÷速度,速度=路程÷时间, 路程=速度×时间。 ①相遇问题:快行距+慢行距=原距; ②追及问题:快行距-慢行距=原距; ③航行问题:顺水(风)速度=静水(风)速度+水流(风)速度, 逆水(风)速度=静水(风)速度-水流(风)速度 例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。 慢车先开出1小时,快车再开。两车相向而行。问快车开出多少小时后两车相遇? 两车同时开出,相背而行多少小时后两车相距600公里? 两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600公里? 两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车? (此题关键是要理解清楚相向、相背、同向等的含义,弄清行驶过程。)例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?<?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />
(3)劳力分配问题:抓住劳力调配后,从甲处人数与乙处人数之间的关系来考虑。 这类问题要搞清人数的变化。例.某厂一车间有64人,二车间有56人。现因工作需要,要求第一车间人数是第二车间人数的一半。问需从第一车间调多少人到第二车间?(4)工程问题: 三个基本量:工作量、工作时间、工作效率; 其基本关系为:工作量=工作效率×工作时间;相关关系:各部分工作量之和为1。 例:一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?(5)利润问题: 基本关系:①商品利润=商品售价-商品进价; ②商品利润率=商品利润/商品进价×100%; ③商品销售额=商品销售价×商品销售量; ④商品的销售利润=(销售价-成本价)×销售量。 ⑤商品售价=商品标价×折扣率例.例:一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少? (6)数字问题:一般可设个位数字为a,十位数字为b,百位数字为c,十位数可表示为10b+a, 百位数可表示为100c+10b+a,然后抓住数字间或新数、原数之间的关系找等量关系列方程。 数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。例:有一个三位数,个位数字为百位数字的2倍,十位数字比百位数字大1,若将此数个位与百位顺序对调(个位变百位)所得的新数比原数的2倍少49,求原数。(7)盈亏问题:“盈”表示分配中的多余情况;“亏”表示不足或缺少部分。 (8)储蓄问题:其数量关系是:利息=本金×利率×存期;:(注意:利息税)。 本息=本金+利息,利息税=利息×利息税率。注意利率有日利率、月利率和年利率,年利率=月利率×12=日利率×365。 (9)溶液配制问题:其基本数量关系是:溶液质量=溶质质量+溶剂质量;溶质质量=溶液中所含溶质的质量分数。这类问题常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意。
(10)比例分配问题: 这类问题的一般思路为:设其中一份为x,利用已知的比,写出相应的代数式。常用等量关系:各部分之和=总量。 还有劳力调配问题、配套问题、年龄问题、比赛积分问题、增长率问题等都会有涉及。
考点名称:一元一次不等式组的应用
一元一次不等式的应用主要涉及问题:1.分配问题:例:一堆玩具分给若干个小朋友,若每人分3件,则剩余4件,若前面每人分4件,则最后一人得到的玩具最多3件,问小朋友的人数至少有多少人?。2.积分问题:例:某次数学测验共20道题(满分100分)。评分办法是:答对1道给5分,答错1道扣2分,不答不给分。某学生有1道未答。那么他至少答对几道题才能及格?3.比较问题:例:某校校长暑假将带领该校“三好学生”去三峡旅游,甲旅行社说:如果校长买全票一张,则其余学生可享受半价优惠;乙旅行社说:包括校长在内全部按全票的6折优惠。已知两家旅行社的全票价都是240元,至少要多少名学生选甲旅行社比较好?
4.行程问题:例:抗洪抢险,向险段运送物资,共有120公里原路程,需要1小时送到,前半小时已经走了50公里后,后半小时速度多大才能保证及时送到?
5.车费问题:例:出租汽车起价是10元(即行驶路程在5km以内需付10元车费),达到或超过5km后,每增加1km加价1.2元(不足1km部分按1km计),现在某人乘这种出租 汽车从甲地到乙地支付车费17.2元,从甲地到乙地的路程超过多少km? 6.浓度问题:例:在1千克含有40克食盐的海水中,在加入食盐,使他成为浓度不底于20%的食盐水,问:至少加入多少食盐?
7.增减问题:例:一根长20cm的弹簧,一端固定,另一端挂物体。在弹簧伸长后的长度不超过30cm的限度内,每挂1㎏质量的物体,弹簧伸长0.5cm.求弹簧所挂物体的最大质量是多少?
8.销售问题:例:商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?