题文
宏达汽车销售有限公司到某汽车制造公司选购A、B两种型号的轿车,用300万元可购进A型轿车10辆,B型轿车15辆;用300万元可购进A型轿车8辆,B型轿车18辆. (1)求A、B两种型号的轿车每辆分别多少元? (2)若该汽车销售公司销售一辆A型轿车可获利8000元,销售一辆B型轿车可获利5000元。该汽车销售公司准备用不超过400万元购买A、B两种型号的轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元。问:有几种购车方案?在这几种购车方案中,哪种获利最多? |
题型:解答题 难度:中档
答案
(1)设A型号的轿车每辆为x万元,B型号的轿车每辆为y万元. 根据题意得 解得 答:A、B两种型号的轿车每辆分别为15万元、10万元; (3)设购进A种型号轿车a辆,则购进B种型号轿车(30-a)辆. 根据题意得 解此不等式组得18≤a≤20. ∵a为整数,∴a=18,19,20. ∴有三种购车方案. 方案一:购进A型号轿车18辆,购进B型号轿车12辆; 方案二:购进A型号轿车19辆,购进B型号车辆11辆; 方案三:购进A型号轿车20辆,购进B型号轿车10辆. 汽车销售公司将这些轿车全部售出后: 方案一获利18×0.8+12×0.5=20.4(万元); 方案二获利19×0.8+11×0.5=20.7(万元); 方案三获利20×0.8+10×0.5=21(万元). 第三种方案获利最多. |
(1)等量关系为:10辆A轿车的价钱+15辆B轿车的价钱=300万元;8辆A轿车的价钱+18辆B轿车的价钱=300万元; (2)根据(1)中求出AB轿车的单价,然后根据关键语“用不超过400万元购进A、B两种型号轿车共30辆,且这两种轿车全部售出后总获利不低于20.4万元”列出不等式组,判断出不同的购车方案,进而求出不同方案的获利的多少. |
据专家权威分析,试题“宏达汽车销售有限公司到某汽车制造公司选购A、B两种型号的轿车,..”主要考查你对 二元一次方程组的定义,二元一次方程的定义,二元一次方程组的解法,二元一次方程组的应用 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的定义二元一次方程的定义二元一次方程组的解法二元一次方程组的应用
考点名称:二元一次方程组的定义 考点名称:二元一次方程的定义 考点名称:二元一次方程组的解法 考点名称:二元一次方程组的应用
|