题文
如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在坐标轴上,且AB=5,sinB=. (1)求过A.C. D三点的抛物线的解析式; (2)记直线AB的解析式为y1=mx+n,(1)中抛物线的解析式为y2=ax2+bx+c,求当y1<y2时,自变量x的取值范围; (3)设直线AB与(1)中抛物线的另一个交点为E,P点为抛物线上A.E两点之间的一个动点,当P点在何处时,△PAE的面积最大?并求出面积的最大值. |
题型:解答题 难度:偏难
答案
解:(1)∵四边形ABCD是菱形, ∴AB=AD=CD=BC=5,sinB=sinD=; Rt△OCD中,OC=CD?sinD=4,OD=3; OA=AD﹣OD=2,即: A(﹣2,0)、B(﹣5,4)、C(0,4)、D(3,0); 设抛物线的解析式为:y=a(x+2)(x﹣3),得: 2×(﹣3)a=4,a=﹣; ∴抛物线:y=﹣x2+x+4. (2)由A(﹣2,0)、B(﹣5,4)得直线AB:y1=﹣x﹣; 由(1)得:y2=﹣x2+x+4,则: ,解得:,; 由图可知:当y1<y2时,﹣2<x<5. (3)∵S△APE=AE?h, ∴当P到直线AB的距离最远时,S△ABC最大; 若设直线L∥AB,则直线L与抛物线有且只有一个交点时,该交点为点P; 设直线L:y=﹣x+b,当直线L与抛物线有且只有一个交点时, ﹣x+b=﹣x2+x+4,且△=0; 求得:b=,即直线L:y=﹣x+; 可得点P(,). 由(2)得:E(5,﹣),则直线PE:y=﹣x+9; 则点F(,0),AF=OA+OF=; ∴△PAE的最大值:S△PAE=S△PAF+S△AEF=××(+)=. 综上所述,当P(,)时,△PAE的面积最大,为.
|
(1)由菱形ABCD的边长和一角的正弦值,可求出OC.OD.OA的长,进而确定A.C.D三点坐标,通过待定系数法可求出抛物线的解析式. (2)首先由A.B的坐标确定直线AB的解析式,然后求出直线AB与抛物线解析式的两个交点,然后通过观察图象找出直线y1在抛物线y2图象下方的部分. (3)该题的关键点是确定点P的位置,△APE的面积最大,那么S△APE=AE×h中h的值最大,即点P离直线AE的距离最远,那么点P为与直线AB平行且与抛物线有且仅有的唯一交点. |
据专家权威分析,试题“如图,在平面直角坐标系xOy中,四边形ABCD是菱形,顶点A.C.D均在..”主要考查你对 二元一次方程组的定义,二元一次方程的定义,二元一次方程组的解法,二元一次方程组的应用 等考点的理解。关于这些考点的“档案”如下:
二元一次方程组的定义二元一次方程的定义二元一次方程组的解法二元一次方程组的应用
考点名称:二元一次方程组的定义 考点名称:二元一次方程的定义 考点名称:二元一次方程组的解法 考点名称:二元一次方程组的应用
|