零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二元一次方程组的应用 > 正文 返回 打印

用大、小两种货车运送360台机械设备,有三种运输方案.方案1:设备的12用大货车运送,其余用小货车运送,需要货车27辆;方案2:设备的13用大货车运送,其余用小货车运送,需要货-数学

[db:作者]  2019-03-14 00:00:00  零零社区

题文

用大、小两种货车运送360台机械设备,有三种运输方案.
方案1:设备的
1
2
用大货车运送,其余用小货车运送,需要货车27辆;
方案2:设备的
1
3
用大货车运送,其余用小货车运送,需要货车28辆;
方案3:设备的
2
3
用大货车运送,其余用小货车运送,需要货车26辆;
(1)每辆大、小货车各可运送多少台机械设备?
(2)如果每辆大货车的运费比每辆小货车的运费高m%(m>0),请你从中选择一种方案,使得运费最低,并说明理由.
题型:解答题  难度:中档

答案

(1)设大货车运送x台,小货车运送y台.则

360
2
x
+
360
2
y
=27
360
3
x
+
360×
2
3
y
=28
240
x
+
120
y
=26

整理得:

20x+20y=3xy
30y+60x=7xy
120y+60x=13xy

所以x=15,y=12.
故每辆大、小货车各可运送15、12台机械设备.
(2)设小货车每辆运费为a元,则大货车每辆(1+m%)x元,
方案一:y1=
180
15
(1+m%)a+
180
12
a=27a+0.12ma;
方案二:y2=
120
15
(1+m%)a+
240
12
a=28a+0.08ma;
方案三:y3=
240
15
(1+m%)a+
120
12
a=26a+0.16ma.
当y1=y2=y3时,m=25,故:
①当m=25时,y1=y2=y3,三种方案运费一样;
②当m>25时,y2<y1<y3,方案二运费最低;
③当0<m<25时,y3<y1<y2,方案三运费最低.

据专家权威分析,试题“用大、小两种货车运送360台机械设备,有三种运输方案.方案1:设备..”主要考查你对  二元一次方程组的应用,分式方程的应用  等考点的理解。关于这些考点的“档案”如下:

二元一次方程组的应用分式方程的应用

考点名称:二元一次方程组的应用

  • 二元一次方程组应用中常见的相等关系:
    1. 行程问题(匀速运动)
    基本关系:s=vt
    ①相遇问题(同时出发):
    确定行程过程中的位置路程
    相遇路程÷速度和=相遇时间
    相遇路程÷相遇时间= 速度和
    相遇问题(直线)
      甲的路程+乙的路程=总路程
    相遇问题(环形)
      甲的路程 +乙的路程=环形周长
    ②追及问题(同时出发):
    追及时间=路程差÷速度差  
    速度差=路程差÷追及时间  
    追及时间×速度差=路程差
    追及问题(直线)
    距离差=追者路程-被追者路程=速度差X追及时间
    追及问题(环形)
    快的路程-慢的路程=曲线的周长
    ③水中航行
    顺水行程=(船速+水速)×顺水时间  
    逆水行程=(船速-水速)×逆水时间  
    顺水速度=船速+水速  
    逆水速度=船速-水速  
    静水速度=(顺水速度+逆水速度)÷2  
    水速:(顺水速度-逆水速度)÷2

    2.配料问题:溶质=溶液×浓度
    溶液=溶质+溶剂

    3.增长率问题

    4.工程问题
    基本关系:工作量=工作效率×工作时间(常把工作量看成单位“1”)。

    5.几何问题
    ①常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
    ②注意语言与解析式的互化:
    如,“多”、“少”、“增加了”、“增加为(到)”、“同时”、“扩大为(到)”、“扩大了”、……
    又如,一个三位数,百位数字为a,十位数字为b,个位数字为c,则这个三位数为:100a+10b+c,而不是abc。
    ③注意从语言叙述中写出相等关系:
    如,x比y大3,则x-y=3或x=y+3或x-3=y。又如,x与y的差为3,则x-y=3。
    ④注意单位换算:
    如,“小时”“分钟”的换算;s、v、t单位的一致等。

  • 二元一次方程组的应用:
    列方程(组)解应用题是中学数学联系实际的一个重要方面。
    其具体步骤是:
    ⑴审题。理解题意。弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
    ⑵设元(未知数)。①直接未知数②间接未知数(往往二者兼用)。一般来说,未知数越多,方程越易列,但越难解。
    ⑶用含未知数的代数式表示相关的量。
    ⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。一般地,未知数个数与方程个数是相同的。
    ⑸解方程及检验。
    ⑹答案。
    综上所述,列方程(组)解应用题实质是先把实际问题转化为数学问题(设元、列方程),在由数学问题的解决而导致实际问题的解决(列方程、写出答案)。在这个过程中,列方程起着承前启后的作用。因此,列方程是解应用题的关键。

考点名称:分式方程的应用

  • 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。
    列分式方程解应用题的一般步骤是:
    ①找等量关系(审):理解题意,弄清具体情境中的已知量与未知量以及它们之间的基本关系;
    ②设:设未知数,用含x(或其他字母)表示某个未知数,由该未知数与其他数量的关系,写出表示相关量的式子;
    ③列:找出相等关系,列出分式方程;
    ④解:解这个分式方程;
    ⑤检验:双重检验,先检验是否为增根,再检验是否符合题意;
    ⑥答:写出答案。

    例题
    南宁到昆明西站的路程为828KM,一列普通列车和一列直达快车都从南宁开往昆明。直达快车的速度是普通快车速度的1.5倍,普通快车出发2H后,直达快车出发,结果比普通列车先到4H,求两次的速度.
    设普通车速度是x千米每小时则直达车是1.5x
    由题意得:
    828/x-828/1.5x=6 ,
    (828×1.5-828)/1.5x=6 ,
    414/1.5=6x,
    x=46, 1.5x=69
    答:普通车速度是46千米每小时,直达车是69千米每小时。

    无解的含义:
    1.解为增根。
    2.整式方程无解。(如:0x不等于0.)

  • 用分式解应用题的常见题型:
    (1)行程问题有路程、时间和速度三个量,其关系式是路程=速度×时间,一般式以时间为等量关系。
    (2)工程问题有工作效率、工作时间和工作总量三个量,其关系式是工作总量=工作效率×工作时间。
    (3)增长率问题,其等量关系式是原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量。



http://www.00-edu.com/ks/shuxue/2/45/2019-03-14/808583.html十二生肖
十二星座