零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 二元一次方程的应用 > 正文 返回 打印

已知与的值互为相反数,求:(1)x、y的值;(2)的值。-八年级数学

[db:作者]  2019-03-14 00:00:00  互联网

题文

已知的值互为相反数,求:
(1)x、y的值;
(2)的值。
题型:解答题  难度:中档

答案

(1);(2)

据专家权威分析,试题“已知与的值互为相反数,求:(1)x、y的值;(2)的值。-八年级数学-魔..”主要考查你对  二元一次方程的应用,相反数,整式的加减乘除混合运算  等考点的理解。关于这些考点的“档案”如下:

二元一次方程的应用相反数整式的加减乘除混合运算

考点名称:二元一次方程的应用

  • 定义的应用,判定一个方程是否是二元一次方程;求方程的未知系数及解应用题。

  • 列二元一次方程组解应用题的一般步骤:
    可概括为“审、找、列、解、答”五步,即:
    (1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;
    (2)找:找出能够表示题意两个相等关系;
    (3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;
    (4)解:解这个方程组,求出两个未知数的值;
    (5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.

    常见问题及解决:
    一、数字问题:
    例:一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
    分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系表示为:
    因此,所求的两位数是14.
    点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.

    二、利润问题:
    商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.
    利润的计算一般有两种方法:
    ①利润=卖出价-进价;
    ②利润=进价×利润率(盈利百分数)。
    特别注意“利润”和“利润率”是不同的两个概念。

    三、配套问题:
    产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:
    ①“二合一”问题:如果a件甲产品和b件乙产品配成一套,
    那么甲产品数的b倍等于乙产品数的a倍,即:
    ②“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,
    那么各种产品数应满足的相等关系式是:

    四、行程问题:
    “相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:
    “相向而遇”时,两者所走的路程之和等于它们原来的距离;
    “同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离。

    五、货运问题:
    由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等。

    六、工程问题:
    工程问题与行程问题相类似,关键要抓好三个基本量的关系,即
    “工作量=工作时间×工作效率”以及它们的变式:
    “工作时间=工作量÷工作效率,
    工作效率=工作量÷工作时间”。
    其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量。

考点名称:相反数

  • 相反数的定义:
    像2和-2,5和-5这样,只有符号不同的两个数叫做互为相反数。
    相反数的几何意义:在数轴上到原点距离相等的两个点表示的两个数叫做互为相反数。
    相反数的代数意义:如果两个数的和为零,其中一个数是另一个数的相反数,这两个数称为互为相反数。

  • 相反数的特性:
    1、若a,b互为相反数,则a+b=0; 反之,若a+b=0,则a,b互为相反数;
    2、在数轴上,互为相反数(0除外)的两个点位于原点的两旁,并且关于原点对称;
    3、此时,b的相反数为﹣b=﹣(﹣a)=a,那么我们就说“相反数具有互称性”。
    4、相反数的规律:正数的相反数是负数,负数的相反数是正数,0的相反数是0。
    5、相反数的表示方法:a的相反数是-a,-a的相反数是a;a-b的相反数是b-a,b-a的相反数是a-b;a+b的相反数是-(a+b),即-a-b。


  •  

  • (互为)相反数的代数意义:
    1、只有符号不同的两个数称互为相反数。a和-a是一对互为相反数,a叫做-a的相反数,-a叫做a的相反数。注意:-a不一定是负数。a不一定是正数。(a不等于0)
    2、若两个实数a和b满足b=﹣a。我们就说b是a的相反数。
    3、两个互为相反数的实数a和b必满足a+b=0。也可以说实数a和b满足a+b=0,则这两个实数a,b互为相反数。

    相反数的判别:
    我们在利用相反数的概念进行化简时,很多情况下,把括号里的部分看成一个整体(即想象成一个数a),问题就容易解决。因此要求一个数的相反数,只要在这个数前面叫上“-”,再化简即可。

    多重符号的化简:
    1、在一个数前面添加一个“+”好,所得的数与原数相同。
    2、在一个数前面添加一个“-”号,所得的数就成为原数的相反数。
    3、对于有三个火三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”号,可以把正号去掉,其次要看“-”号的个数,当“-”号的个数为偶数个时,结果取正,当“-”号的个数为奇数个时,结果取“-”号。

考点名称:整式的加减乘除混合运算

  • 加法、减法、乘法和除法,统称为四则运算。
    其中,加法和减法叫做第一级运算;乘法和除法叫做第二级运算。
    注意运算顺序,先做乘方,再做乘除,最做加减运算,如果有同类项,就合并同类项,要求结果必须是最简形式。

  • 基本运算顺序:
    只有一级运算时,从左到右计算;
    有两级运算时,先乘除,后加减。
    有括号时,先算括号里的;
    有多层括号时,先算小括号里的。
    要是有平方,先算平方。
    在混合运算中,先算括号内的数,括号从小到大,然后从高级到低级。



http://www.00-edu.com/ks/shuxue/2/46/2019-03-14/802046.html十二生肖
十二星座