题文
先阅读理解下面的例题,再按要求解答下列问题: 例题:解一元二次不等式x2﹣4>0 解:∵x2﹣4=(x+2)(x﹣2) ∴x2﹣4>0可化为 (x+2)(x﹣2)>0 由有理数的乘法法则“两数相乘,同号得正”,得
解不等式组①,得x>2, 解不等式组②,得x<﹣2, ∴(x+2)(x﹣2)>0的解集为x>2或x<﹣2, 即一元二次不等式x2﹣4>0的解集为x>2或x<﹣2. (1)一元二次不等式x2﹣16>0的解集为 ; (2)分式不等式的解集为 ; (3)解一元二次不等式2x2﹣3x<0. |
题型:解答题 难度:中档
答案
解:(1)x>4或x<﹣4。 (2)x>3或x<1。 (3)∵2x2﹣3x=x(2x﹣3) ∴2x2﹣3x<0可化为 x(2x﹣3)<0 由有理数的乘法法则“两数相乘,异号得负”,得 或。 解不等式组①,得0<x<,解不等式组②,无解。 ∴不等式2x2﹣3x<0的解集为0<x<。 |
有理数的乘法法则,一元一次不等式组的应用。 (1)将一元二次不等式的左边因式分解后根据有理数的乘法法则“两数相乘,同号得正”化为两个一元一次不等式组求解即可。 (2)根据有理数的除法法则“两数相除,同号得正”,可以得到其分子、分母同号,从而转化为两个一元一次不等式组求解即可。 (3)将一元二次不等式的左边因式分解后,有理数的乘法法则“两数相乘,异号得负”,化为两个一元一次不等式组求解即可。 |
据专家权威分析,试题“先阅读理解下面的例题,再按要求解答下列问题:例题:解一元二次不..”主要考查你对 不等式的性质,不等式的定义,一元一次不等式的解法,一元一次不等式组的定义 等考点的理解。关于这些考点的“档案”如下:
不等式的性质不等式的定义一元一次不等式的解法一元一次不等式组的定义
考点名称:不等式的性质 考点名称:不等式的定义 考点名称:一元一次不等式的解法 考点名称:一元一次不等式组的定义
|