题文
某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树的单价比香樟树少20元,购买3棵榕树和2棵香樟树共需340元. (1)请问榕树和香樟树的单价各多少? (2)根据学校实际情况,需购买两种树苗共150棵,总费用不超过10840元,且购买香樟树的棵树不少于榕树的1.5倍,请你算算,该校本次购买榕树和香樟树共有哪几种方案. |
题型:解答题 难度:偏易
答案
(1)榕树和香樟树的单价分别是60元/棵,80元/棵。 (2)有3种购买方案: 方案一:购买榕树58棵,香樟树92棵, 方案二:购买榕树59棵,香樟树91棵, 方案三:购买榕树60棵,香樟树90棵。 |
试题分析:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵,然后根据单价之间的关系和340元两个等量关系列出二元一次方程组,求解即可。 (2)设购买榕树a棵,表示出香樟树为(150﹣a)棵,然后根据总费用和两种树的棵数关系列出不等式组,求出a的取值范围,在根据a是正整数确定出购买方案。 解:(1)设榕树的单价为x元/棵,香樟树的单价是y元/棵, 根据题意得,,解得。 答:榕树和香樟树的单价分别是60元/棵,80元/棵。 (2)设购买榕树a棵,则购买香樟树为(150﹣a)棵, 根据题意得,, 解不等式①得,a≥58,解不等式②得,a≤60, ∴不等式组的解集是58≤a≤60。 ∵a只能取正整数,∴a=58、59、60。 ∴有3种购买方案: 方案一:购买榕树58棵,香樟树92棵, 方案二:购买榕树59棵,香樟树91棵, 方案三:购买榕树60棵,香樟树90棵。 |
据专家权威分析,试题“某中学为了绿化校园,计划购买一批棕树和香樟树,经市场调查榕树..”主要考查你对 不等式的性质,不等式的定义,一元一次不等式的解法,一元一次不等式组的定义 等考点的理解。关于这些考点的“档案”如下:
不等式的性质不等式的定义一元一次不等式的解法一元一次不等式组的定义
考点名称:不等式的性质 考点名称:不等式的定义 考点名称:一元一次不等式的解法 考点名称:一元一次不等式组的定义
|