老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置-九年级数学 |
|
[db:作者] 2019-03-14 00:00:00 零零社区 |
|
题文
老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规格的网箱,养殖A、B两种淡水鱼(两种鱼不能混养).计划用于养鱼的总投资不少于7万元,但不超过7.2万元,其中购置网箱等基础建设需要1.2万元.设他用x只网箱养殖A种淡水鱼,目前平均每只网箱养殖A、B两种淡水鱼所需投入及产出情况如下表:
| 鱼苗投资 (百元)
| 饲料支出 (百元)
| 收获成品鱼 (千克)
| 成品鱼价格 (百元/千克)
| A种鱼
| 2
| 3
| 100
| 0.1
| B种鱼
| 4
| 5
| 55
| 0.4
| (利润=收入-支出.收入指成品鱼收益,支出包括基础建设投入、鱼苗投资及饲料支出) (1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是多少万元? (2)基础建设投入、鱼苗投资、饲料支出及产量不变,但当老王的鱼上市时,A种鱼价格上涨a%,B种鱼价格下降20%,使老王养鱼实际获得利润5.68万元.求a的值. |
题型:解答题 难度:中档
答案
(1)按目前市场行情,老王养殖A、B两种淡水鱼获得利润最多是6.8万元;(2)a=36. |
试题分析:(1)根据题意求出30≤x≤35,再表示出A、B两种鱼所获利润,最后找最大利润; (2)表示出价格变动后,A、B两种鱼上市时所获利润,再解方程. 试题解析:(1)设他用x只网箱养殖A种淡水鱼,则用(80-x)只网箱养殖B种淡水鱼. 由题意,得700≤5x+9(80﹣x)+120≤720, 解得:30≤x≤35 设A、B两种鱼所获利润w="(10-5)x+(22-9)×(80-x)-120=-8x+920," 所以,当x=30时,所获利润w最多是6.8万元 (2)价格变动后,一箱A种鱼的利润=100×0.1×(1+a%)﹣(2+3)=5+0.1a(百元), 一箱B种鱼的利润=55×0.4×(1﹣20%)﹣(4+5)=8.6(百元). 设A、B两种鱼上市时所获利润w="(5+0.1a)x+8.6×(80-x)-120=(0.1a-3.6)x+568," 所以,(0.1a-3.6)x+568=568,所以,(0.1a-3.6)x=0 因为,30≤x≤35,所以,0.1a-3.6=0,a=36. |
据专家权威分析,试题“老王是新农村建设中涌现出的“养殖专业户”.他准备购置80只相同规..”主要考查你对 不等式的性质,不等式的定义,一元一次不等式的解法,一元一次不等式组的定义 等考点的理解。关于这些考点的“档案”如下:
不等式的性质不等式的定义一元一次不等式的解法一元一次不等式组的定义
考点名称:不等式的性质 考点名称:不等式的定义 考点名称:一元一次不等式的解法 考点名称:一元一次不等式组的定义
|
|
http://www.00-edu.com/ks/shuxue/2/49/2019-03-14/822390.html十二生肖十二星座
|