题文
答案
据专家权威分析,试题“如果3x-5有意义,则x可以取的最小整数为()A.0B.1C.2D.3-数学-魔方..”主要考查你对 一元一次不等式的解法,二次根式的定义 等考点的理解。关于这些考点的“档案”如下:
一元一次不等式的解法二次根式的定义
考点名称:一元一次不等式的解法
一元一次不等式的解集:一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有正实数。求不等式解集的过程叫做解不等式。将不等式化为ax>b的形式(1)若a>0,则解集为x>b/a(2)若a<0,则解集为x<b/a
一元一次不等式的特殊解:不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。
一元一次不等式的解法:解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。有两种解题思路:(1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;(2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。 解一元一次不等式的一般顺序: (1)去分母 (运用不等式性质2、3) (2)去括号 (3)移项 (运用不等式性质1) (4)合并同类项。 (5)将未知数的系数化为1 (运用不等式性质2、3) (6)有些时候需要在数轴上表示不等式的解集 不等式解集的表示方法: (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。例如:x-1≤2的解集是x≤3。 (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
考点名称:二次根式的定义
二次根式判定:①二次根式必须有二次根号,如,等;②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;③二次根式定义中a≥0 是定义组成的一部分,不能省略;④二次根式是一个非负数;⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。二次根式的应用:主要体现在两个方面:(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。