零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元一次不等式的解法 > 正文 返回 打印

计算与化简:(1)分解因式:3x2-3y2;(2)解不等式x-52+1>x-3;(3)化简并求值:(2x2-2x-1x2-4x+4)÷x-4x,其中x=12.-数学

[db:作者]  2019-03-16 00:00:00  互联网

题文

计算与化简:
(1)分解因式:3x2-3y2
(2)解不等式
x-5
2
+1>x-3;
(3)化简并求值:(
2
x2-2x
-
1
x2-4x+4
x-4
x
,其中x=
1
2
题型:解答题  难度:中档

答案

(1)原式=3(x2-y2)=3(x-y)(x+y);

(2)解x-5+2>2(x-3)
化简,得:x<3,
∴原不等式的解集为x<3;

(3)化简(
2
x2-2x
-
1
x2-4x+4
x-4
x
=
1
(x-2)2

当x=
1
2
时,原式=
4
9

据专家权威分析,试题“计算与化简:(1)分解因式:3x2-3y2;(2)解不等式x-52+1>x-3;(3)化..”主要考查你对  一元一次不等式的解法,因式分解,分式的加减乘除混合运算及分式的化简  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的解法因式分解分式的加减乘除混合运算及分式的化简

考点名称:一元一次不等式的解法

  • 一元一次不等式的解集:
    一个有未知数的不等式的所有解,组成这个不等式的解集。例如﹕
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有正实数。

    求不等式解集的过程叫做解不等式。
    将不等式化为ax>b的形式
    (1)若a>0,则解集为x>b/a
    (2)若a<0,则解集为x<b/a

    一元一次不等式的特殊解:
    不等式的解集一般是一个取值范围,但有时需要求未知数的某些特殊解,如求正数解、整数解、最大整数解等,解答这类问题关键是明确解的特征。

  • 不等式的解与解集:
    不等式成立的未知数的值叫做不等式的解。如x=1是x+2>1的解
    ①不等式的解是指某一范围内的某个数,用它来代替不等式中的未知数,不等式成立。
    ②要判断某个未知数的值是不是不等式的解,可直接将该值代入等式的左、右两边,看不等式是否成立,若成立,则是;否则不是。
    ③一般地,一个不等式的解不止一个,往往有无数个,如所有大于3的数都是x>3的解,但也存在特殊情况,如|x|≦0,就只有一个解,为x=0

    不等式的解集和不等式的解是两个不同的概念。
    ①不等式的解集一般是一个取值范围,在这个范围内的每一个数值都是不等式的一个解,不等式一般有无数个解。
    ②不等式的解集包含两方面的意思:
    解集中的任何一个数值,都能使不等式成立;解集外的任何一个数值,都不能使不等式成立。(即不等式不成立)
    ③不等式的解集可以在数轴上直观的表示出来,如不等式x-1<2的解集是x<3,可以用数轴上表示3的点左边部分来表示,在数轴上表示3的点的位置上画空心圆圈,表示不包括这一点。

  • 一元一次不等式的解法
    解一元一次不等式与解一元一次方程的方法步骤类似,只是在利用不等式基本性质3对不等式进行变形时,要改变不等式的符号。
    有两种解题思路:
    (1)可以利用不等式的基本性质,设法将未知数保留在不等式的一边,其他项在另一边;
    (2)采用解一元一次方程的解题步骤:去分母、去括号、移项、合并同类项、系数化为1等步骤。 

    解一元一次不等式的一般顺序:
    (1)去分母 (运用不等式性质2、3)   
    (2)去括号   
    (3)移项 (运用不等式性质1)   
    (4)合并同类项。   
    (5)将未知数的系数化为1 (运用不等式性质2、3)   
    (6)有些时候需要在数轴上表示不等式的解集
     
    不等式解集的表示方法:
    (1) 用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来。
    例如:x-1≤2的解集是x≤3。   
    (2) 用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解。
    用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。

考点名称:因式分解

  • 定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作把这个多项式分解因式。
    它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。

  • 因式分解没有普遍适用的方法,初中数学教材中主要介绍了提公因式法、运用公式法、分组分解法。而在竞赛上,又有拆项和添减项法,十字相乘法,待定系数法,双十字相乘法,对称多项式,轮换对称多项式法,余式定理法,求根公式法,换元法,长除法,短除法,除法等。
    注意四原则:
    1.分解要彻底(是否有公因式,是否可用公式)
    2.最后结果只有小括号
    3.最后结果中多项式首项系数为正(例如:)不一定首项一定为正。

  • 因式分解中的四个注意
    ①首项有负常提负,
    ②各项有“公”先提“公”,
    ③某项提出莫漏1,
    ④括号里面分到“底”。
    现举下例,可供参考。
    例:
    把-a2-b2+2ab+4分解因式。
    解:-a2-b2+2ab+4
    =-(a2-2ab+b2-4)
    =-[(a-b)2-4]
    =-(a-b+2)(a-b-2)
    这里的“负”,指“负号”。
    如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的;

    这里的“公”指“公因式”。
    如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;

    这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。

    分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。
    其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。
    在没有说明化到实数时,一般只化到有理数就够了,有说明实数的话,一般就要化到实数!
    由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”等是一脉相承的。

  • 分解步骤:
    ①如果多项式的各项有公因式,那么先提公因式;
    ②如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;
    ③如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解
    ④分解因式,必须进行到每一个多项式因式都不能再分解为止。
    也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要相对合适。”

    分解因式技巧掌握:
    ①分解因式是多项式的恒等变形,要求等式左边必须是多项式
    ②分解因式的结果必须是以乘积的形式表示
    ③每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数
    ④分解因式必须分解到每个多项式因式都不能再分解为止。
    注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。

    主要方法:
    1.提取公因式法:
    如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。
    提公因式法基本步骤:
    (1)找出公因式
    (2)提公因式并确定另一个因式:
    ①第一步找公因式可按照确定公因式的方法先确定系数再确定字母
    ②第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式
    ③提完公因式后,另一因式的项数与原多项式的项数相同。

    2.公式法:
    把乘法公式的平方差公式和完全平方公式反过来,得到因式分解的公式:
    平方差公式:a2-b2=(a+b)·(a-b);
    完全平方式:a2±2ab+b2=(a±b)2
    立方差公式:

    3.分组分解法:
    利用分组分解因式的方法叫做分组分解法,ac+ad+bc+bd=a·(c+d)+b·(c+d)=(a+b)·(c+d)
    其原则:
    ①连续提取公因式法:分组后每组能够分解因式,每组分解因式后,组与组之间又有公因式可提。
    ②分组后直接运用公式法:分组后各组内可以直接应用公式,各组分解因式后,使组与组之间构成公式的形式,然后用公式法分解因式。

    4.十字相乘法:a2+(p+q)·a+p·q=(a+p)·(a+q)。

    5.解方程法:
    通过解方程来进行因式分解,如
    x2+2x+1=0 ,解,得x1=-1,x2=-1,就得到原式=(x+1)×(x+1)

    6.待定系数法:
    首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。
    例:
    分解因式x -x -5x -6x-4
    分析:易知这个多项式没有一次因式,因而只能分解为两个二次因式。
    解:
    设x -x -5x -6x-4
    =(x +ax+b)(x +cx+d)
    = x +(a+c)x +(ac+b+d)x +(ad+bc)x+bd
    所以 解得 a=1,b=1,c=-2,d=-4
    则x -x -5x -6x-4 =(x +x+1)(x -2x-4)

考点名称:分式的加减乘除混合运算及分式的化简

  • 分式的加减乘除混合运算:
    分式的混合运算应先乘方,再乘除,最后算加减,有括号的先算括号内的。也可以把除法转化为乘法,再运用乘法运算。

    分式的化简:借助分式的基本性质,应用换元法、整体代入法等,通过约分和通分来达到简化分式的目的。

  • 分式的混合运算:
    在解答分式的乘除法混合运算时,注意两点,就可以了:
    注意运算的顺序:按照从左到右的顺序依次计算;
    注意分式乘除法法则的灵活应用。



http://www.00-edu.com/ks/shuxue/2/50/2019-03-16/828240.html十二生肖
十二星座