题文
答案
据专家权威分析,试题“已知实数a满足不等式组a-2(a-1)>0a+12-1>0则化简下列式子a2-4a+4..”主要考查你对 一元一次不等式组的解法,二次根式的定义 等考点的理解。关于这些考点的“档案”如下:
一元一次不等式组的解法二次根式的定义
考点名称:一元一次不等式组的解法
一元一次不等式组解集:一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。 例如:不等式x-5≤-1的解集为x≤4;不等式x﹥0的解集是所有非零实数。解法:求不等式组的解集的过程,叫做解不等式组。
一元一次不等式组的解答步骤:(1)分别求出不等式组中各个不等式的解集;(2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;(3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。解法诀窍:同大取大 ;例如:X>-1X>2不等式组的解集是X>2同小取小;例如:X<-4X<-6不等式组的解集是X<-6大小小大中间找;例如,x<2,x>1,不等式组的解集是1<x<2大大小小不用找例如,x<2,x>3,不等式组无解
一元一次不等式组的整数解:一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。例如所以原不等式的整数解为1,2。
考点名称:二次根式的定义
二次根式判定:①二次根式必须有二次根号,如,等;②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;③二次根式定义中a≥0 是定义组成的一部分,不能省略;④二次根式是一个非负数;⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。二次根式的应用:主要体现在两个方面:(1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;(2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。