零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元一次不等式组的解法 > 正文 返回 打印

已知关于x的一元二次方程(1-k)x2-2x-1=0有两个不相等的实数根,则k的最大整数值是()A.2B.1C.0D.-1-数学

[db:作者]  2019-03-16 00:00:00  互联网

题文

已知关于x的一元二次方程(1-k)x2-2x-1=0有两个不相等的实数根,则k的最大整数值是(  )
A.2 B.1 C.0 D.-1
题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“已知关于x的一元二次方程(1-k)x2-2x-1=0有两个不相等的实数根,则..”主要考查你对  一元一次不等式组的解法,一元二次方程的定义,一元二次方程根的判别式  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式组的解法一元二次方程的定义一元二次方程根的判别式

考点名称:一元一次不等式组的解法

  • 一元一次不等式组解集:
    一元一次不等式组中各个不等式的解集的公共部分叫做这个不等式组的解集。
    注:当任何数x都不能使各个不等式同时成立,我们就说这个一元一次不等式组无解或其解集为空集。
    例如:
    不等式x-5≤-1的解集为x≤4;
    不等式x﹥0的解集是所有非零实数。
    解法:求不等式组的解集的过程,叫做解不等式组。

  • 求几个一元一次不等式的解集的公共部分,通常是利用数轴来确定的,公共部分是指数轴上被两条不等式解集的区域都覆盖的部分;
    一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的解集、数轴表示如下表:(设a<b)

  • 一元一次不等式组的解答步骤:
    (1)分别求出不等式组中各个不等式的解集;
    (2)将这些不等式的解集在同一个数轴上表示出来,找出它们的的公共部分;
    (3)根据找出的公共部分写出不等式组的解集,若没有公共部分,说明不等式组无解。

    解法诀窍:
    同大取大 ;
    例如:
    X>-1
    X>2
    不等式组的解集是X>2

    同小取小;
    例如:
    X<-4
    X<-6
    不等式组的解集是X<-6

    大小小大中间找;
    例如,
    x<2,x>1,不等式组的解集是1<x<2

    大大小小不用找
    例如,
    x<2,x>3,不等式组无解

  • 一元一次不等式组的整数解:
    一元一次不等式组的整数解是指在不等式组中各个不等式的解集中满足整数条件的解的公共部分。
    求一元一次不等式组的整数解的一般步骤:先求出不等式组的解集,再从解集中找出所有整数解,其中要注意整数解的取值范围不要搞错。
    例如



    所以原不等式的整数解为1,2。

考点名称:一元二次方程的定义

  • 定义
    只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

    一元二次方程的一般形式:
    它的特征是:等式左边是一个关于未知数x的二次多项式,等式右边是零,其中 ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。

  • 方程特点;
    (1)该方程为整式方程。
    (2)该方程有且只含有一个未知数。
    (3)该方程中未知数的最高次数是2。

    判断方法:

    要判断一个方程是否为一元二次方程,先看它是否为整式方程。若是,再对它进行整理。如果能整理为(a≠0)的形式,则这个方程就为一元二次方程。

  • 点拨:
    ①“a≠0”是一元二次方程的一般形式的重要组成部分,当a=0,b≠0时,她就成为一元一次方程了。反之,如果明确了是一元二次方程,就隐含了a≠0这个条件;
    ②任何一个一元二次方程, 经过整理都能化成一般形式,在判断一个方程是不是一元二次方程时,首先化成一般形式,再判断;
    ③二次项系数、一次项系数和常数项都是在一般形式下定义的,所以咋确定一元二次方程各项的系数时,应首先将方程化为一般形式;
    ④项的系数包括它前面的符号。如:x2+5x+3=0的一次项系数是5,而不是5x;3x2+4x-1=0的常数项是-1而不是1;
    ⑤若一元二次方程化为一元二次方程的一般形式,并指出二次项系数、一次项系数和常数项。

考点名称:一元二次方程根的判别式

  • 根的判别式:
    一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac。
    定理1  ax2+bx+c=0(a≠0)中,△>0方程有两个不等实数根;
    定理2  ax2+bx+c=0(a≠0)中,△=0方程有两个相等实数根;
    定理3  ax2+bx+c=0(a≠0)中,△<0方程没有实数根。

    根的判别式逆用(注意:根据课本“反过来也成立”)得到三个定理。
    定理4  ax2+bx+c=0(a≠0)中,方程有两个不等实数根△>0;
    定理5  ax2+bx+c=0(a≠0)中,方程有两个相等实数根△=0;
    定理6  ax2+bx+c=0(a≠0)中,方程没有实数根△<0。
    注意:(1)再次强调:根的判别式是指△=b2-4ac。
    (2)使用判别式之前一定要先把方程变化为一般形式,以便正确找出a、b、c的值。
    (3)如果说方程,即应当包括有两个不等实根或有两相等实根两种情况,此时b2-4ac≥0切勿丢掉等号。
    (4)根的判别式b2-4ac的使用条件,是在一元二次方程中,而非别的方程中,因此,要注意隐含条件a≠0。

  • 根的判别式有以下应用:
    ①不解一元二次方程,判断根的情况。
    ②根据方程根的情况,确定待定系数的取值范围。
    ③证明字母系数方程有实数根或无实数根。
    ④应用根的判别式判断三角形的形状。
    ⑤判断当字母的值为何值时,二次三项是完全平方式。
    ⑥可以判断抛物线与直线有无公共点。
    ⑦可以判断抛物线与x轴有几个交点。
    ⑧利用根的判别式解有关抛物线(△>0)与x轴两交点间的距离的问题。



http://www.00-edu.com/ks/shuxue/2/52/2019-03-16/832294.html十二生肖
十二星座