题文
随着私家车拥有量的增加,停车问题已经给人们的生活带来了很多不便,为了缓解停车矛盾,某小区开发商欲投资16万元,建造若干个停车位,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的3倍,据测算,建造费用及年租金如下表: |
类别 |
室内车位 |
露天车位 |
建造费用(元/个) |
5000 |
1000 |
年租金(元/个) |
2000 |
800 | (1)该开发商有哪几种符合题意的建造方案?写出解答过程。 (2)若按表中的价格将两种车位全部出租,哪种方案获得的年租金最多?并求出此种方案的年租金。(不考虑其他费用) |
题型:解答题 难度:中档
答案
解:(1)设建造室内停车位为x个,则建造露天停车位为个 根据题意,得 解得 ∵x为整数, ∴x取20,21,22 ∴取60,55,50 ∴共有三种建造方案 方案一:室内停车位20个,露天停车位60个; 方案二:室内停车位21个,露天停车位55个; 方案三:室内停车位22个,露天停车位50个。 (2)设年租金为w元 根据题意,得
=-2000x+128000 ∵k=-2000<0, ∴w随x的增大而减小 ∴当x=20时,w最大=-2000×20+128000 =88000(元) 答:当建造室内停车位20个,露天停车位60个时租金最多,最多年租金为88000元。 |
据专家权威分析,试题“随着私家车拥有量的增加,停车问题已经给人们的生活带来了很多不..”主要考查你对 一元一次不等式组的应用,求一次函数的解析式及一次函数的应用 等考点的理解。关于这些考点的“档案”如下:
一元一次不等式组的应用求一次函数的解析式及一次函数的应用
考点名称:一元一次不等式组的应用 考点名称:求一次函数的解析式及一次函数的应用
|