题文
答案
据专家权威分析,试题“有理数a,b在数轴上的位置如图,则下列各式不成立的是[]A.a+b<0B..”主要考查你对 不等式的比较大小,数轴,绝对值 等考点的理解。关于这些考点的“档案”如下:
不等式的比较大小数轴绝对值
考点名称:不等式的比较大小
方法:①求差比较法的基本步骤是:“作差——变形——断号”。其中,作差是依据,变形是手段,判断符号才是目的。
变形的目的全在于判断差的符号,而不必考虑差值是多少:变形的方法一般有配方法、通分的方法和因式分解的方法等,为此,有时把差变形为一个常数,或者变形为一个常数与一个或几个数的平方和的形式。或者变形为一个分式,或者变形为几个因式的积的形式等。总之,能够判断出差的符号是正或负即可。
②作商比较法的基本步骤是:“作商——变形——判断商式与1的大小关系”,需要注意的是,作商比较法一般用于不等号两侧的式子同号的不等式的证明。
考点名称:数轴
数轴的应用范畴:符号相反的两个数互为相反数,零的相反数是零。(如2的相反—2)在数轴上离开原点的距离就叫做这个数的绝对值。一个正数的绝对值是它本身,一个负数的相反数是它的正数,0的绝对值是0。
考点名称:绝对值
绝对值的有关性质:①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性; ②绝对值等于0的数只有一个,就是0; ③绝对值等于同一个正数的数有两个,这两个数互为相反数; ④互为相反数的两个数的绝对值相等。 绝对值的化简:绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)②整数就找到这两个数的相同因数;③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。