零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元一次不等式的应用 > 正文 返回 打印

设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,则x1+x2+x3的最大值是______.-数学

[db:作者]  2019-03-19 00:00:00  互联网

题文

设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,则x1+x2+x3的最大值是______.
题型:填空题  难度:中档

答案

∵x1<x2<x3<…x6<x7,又x1+x2+x3+x4+x5+x6+x7=159,
∴x1+(x1+1)+(x1+2)…+(x1+6)≤159,
解得x1≤19
5
7

∴x1的最大值为19,
同理可得x2的最大值为20,x3的最大值为21,
∴x1+x2+x3的最大值是60.
故答案为60.

据专家权威分析,试题“设x1,x2,x3,x4,x5,x6,x7为自然数,且x1<x2<x3<…x6<x7,又x..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。



http://www.00-edu.com/ks/shuxue/2/56/2019-03-19/842263.html十二生肖
十二星座