零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一元一次不等式的应用 > 正文 返回 打印

某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所-数学

[db:作者]  2019-03-19 00:00:00  互联网

题文

某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万元;每件乙种商品进价8万元,售价10万元,且它们的进价和售价始终不变.现准备购进甲、乙两种商品共20件,所用资金不低于190万元,不高于200万元.
(1)该公司有哪几种进货方案?
(2)该公司采用哪种进货方案可获得最大利润?最大利润是多少?
(3)若用(2)中所求得的利润再次进货,请直接写出获得最大利润的进货方案.
题型:解答题  难度:中档

答案

(1)设购进甲种商品x件,乙种商品(20-x)件,根据题意得
190≤12x+8(20-x)≤200
解得7.5≤x≤10
∵x为非负整数
∴x取8,9,10
有三种进货方案:
①购甲种商品8件,乙种商品12件;
②购甲种商品9件,乙种商品11件;
③购甲种商品10件,乙种商品10件.

(2)设利润为w元,
则w=x×(14.5-12)+(20-x)×(10-8)=0.5x+40
∴购甲种商品10件,乙种商品10件时,可获得最大利润,最大利润是45万元.

(3)①全进甲,能购买3件,利润为(14.5-12)×3=7.5万元;
②全进乙,能购买5件,利润为(10-8)×5=10万元;
③甲进1件,同时乙进4件,利润为(14.5-12)×1+(10-8)×4=10.5万;
④甲进2件,同时乙进2件,利润为2.5×2+2×2=9万元;
⑤甲进3件,同时乙进1件,利润为2.5×3+2×1=9.5万元;
所以购甲种商品1件,乙种商品4件时,可获得最大利润为10.5万元.

据专家权威分析,试题“某公司经营甲、乙两种商品,每件甲种商品进价12万元,售价14.5万..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。



http://www.00-edu.com/ks/shuxue/2/56/2019-03-19/843853.html十二生肖
十二星座