零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 函数的图像 > 正文 返回 打印

如图1,在矩形MNPQ中,动点R从点N出发,沿NP、PQ、QM运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y是关于x的函数图象如图2所示,则当x=9.5时,点R运动到()A.-数学

[db:作者]  2019-03-20 00:00:00  互联网

题文

如图1,在矩形MNPQ中,动点R从点N出发,沿NP、PQ、QM运动至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y是关于x的函数图象如图2所示,则当x=9.5时,点R运动到(  )


A.线段PQ的中点处B.线段QM的中点处
C.P处D.M处
题型:单选题  难度:中档

答案

∵x=3时,及R从N到达点P时,面积开始不变,
∴PN=3,
同理可得QP=5,
∴当x=9.5时,点R运动到线段QM的中点处.
故选:B.

据专家权威分析,试题“如图1,在矩形MNPQ中,动点R从点N出发,沿NP、PQ、QM运动至点M处..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。



http://www.00-edu.com/ks/shuxue/2/62/2019-03-20/863798.html十二生肖
十二星座