题文
如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距离分别是a米(0<a<12)、4米.现在想用16米长的篱笆,借助墙角围成一个矩形的花圃ABCD,且将这棵树围在花圃内(不考虑树的粗细).设此矩形花圃的最大面积为S,则S关于a的函数图象大致是( )
答案
C
试题分析:
设AD长为x,则CD长为16-x,所以,矩形ABCD的面积为S=x(16-x)=-(x-8)2+64,当x=8时,S取得最大值,S最大=64,所以,0<a<8时,矩形花圃的最大面积为S为定值64,8<a<12时,∵S=x(16-x)的S随x的增大而减小,∴x=a时S取得最大值,S=a(16-a),∴S=
据专家权威分析,试题“如图,有一直角墙角,两边的长度足够长,在P处有一棵树与两墙的距..”主要考查你对 函数的图像 等考点的理解。关于这些考点的“档案”如下:
函数的图像
考点名称:函数的图像
函数图象的概念:对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.函数图象上的点的坐标与其解析式之间的关系:①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。