零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 函数的图像 > 正文 返回 打印

四边形ABCD为直角梯形,CD∥AB,CB⊥AB且CD=BC=12AB,若直线L⊥AB,直线L截这个梯形所得的位于此直线左方的图形面积为y,点A到直线L的距离为x,则y与x关系的大致图象为()A.B.C.-数学

[db:作者]  2019-03-20 00:00:00  零零社区

题文

四边形ABCD为直角梯形,CD∥AB,CB⊥AB且CD=BC=
1
2
AB,若直线L⊥AB,直线L截这个梯形所得的位于此直线左方的图形面积为y,点A到直线L的距离为x,则y与x关系的大致图象为(  )
A.B.C.D.

题型:单选题  难度:中档

答案

如图,点D作DE垂直于AB,垂足为E,
∵CD∥AB,CB⊥AB且CD=BC=
1
2
AB,
∴四边形DEBC为正方形,
∴DC=EB,
∴AE=DE,
∴△ADE为等腰直角三角形,
∴∠A=45°;
点A到直线L的距离为x,直线左方的图形面积为y,
直线l运动到D点时,函数解析式为y=
1
2
x2
当直线l运动由D点运动到C点时,函数解析式为y=
1
2
BC(2x-BC),BC为常数,因此为一次函数,
因此符合y与x关系的大致图象只有C.
故选C.

据专家权威分析,试题“四边形ABCD为直角梯形,CD∥AB,CB⊥AB且CD=BC=12AB,若直线L⊥AB,..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。



http://www.00-edu.com/ks/shuxue/2/62/2019-03-20/864388.html十二生肖
十二星座