题文
如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,顶点A的坐标是(0,2),点B、C、D的坐标分别是(2,2)、(1,4)、(0,4),一次函数y=x+t的图象l随t的不同取值变化时,位于l的右下方由l和梯形的边围成的图形面积为S(阴影部分).则能反映S与t(0≤t<4)之间的函数图象是( )
答案
据专家权威分析,试题“如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,顶点A的坐标是(0,2),..”主要考查你对 函数的图像 等考点的理解。关于这些考点的“档案”如下:
函数的图像
考点名称:函数的图像
函数图象的概念:对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.
利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.函数图象上的点的坐标与其解析式之间的关系:①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。