零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一次函数的定义 > 正文 返回 打印

已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).(1)求直线l1,l2的表达式;(2)点C为线段OB上一动点-八年级数学

[db:作者]  2019-03-20 00:00:00  零零社区

题文

已知,如图,在平面直角坐标系内,点A的坐标为(0,24 ),经过原点的直线l1与经过点A的直线l2相交于点B,点B坐标为(18,6).
(1)求直线l1,l2的表达式;
(2)点C为线段OB上一动点 (点C不与点O,B重合),作CD∥y轴交直线l2于点D,过点C,D分别向y轴作垂线,垂足分别为F,E,得到矩形CDEF.
①设点C的纵坐标为a,求点D的坐标(用含a的代数式表示);
②若矩形CDEF的面积为60,请直接写出此时点C的坐标.

题型:解答题  难度:中档

答案

(1)l1的表达式为y=x,l2的表达式为=-x+24,(2)①D(3a, -3a+24)②C(3, 1) 或C(15, 5)

解:(1)设直线l1的表达式为y=k1x,∵直线l1过B(18, 6),∴18k1=6 ,即k1=
∴直线l1的表达式为y=x。
设直线l2的表达式为y=k2x+b,∵直线l2过A (0, 24), B(18, 6),
 解得 
y∴直线l2的表达式为=-x+24。

(2) ①∵点C在直线l1上, 且点C的纵坐标为a,
∴a=x,得x=3a。 ∴点C的坐标为 (3a, a)。
∵CD∥y轴,∴点D的横坐标为3a。
∵点D在直线l2上 ,∴y=-3a+24。∴D(3a, -3a+24)。
②C(3, 1) 或C(15, 5)。
(1)设直线l1的表达式为y=k1x,它过(18,6)可求出k1的值,从而得出其解析式;设直线l2的表达式为y=k2+b,由于它过点A(0,24),B(18,6),故把此两点坐标代入即可求出k2,b的值,从而得出其解析式。
(2)①因为点C在直线l1上,且点C的纵坐标为a,故把y=a代入直线l1的表达式即可得出x的值,从而得出C点坐标;由于CD∥y轴,所以点D的横坐标为3a,再根据点D在直线l2上即可得出点D的纵坐标,从而得出结论。
②先根据C、D两点的坐标用a表示出CF及CD的值,由矩形的面积为60即可求出a的值,得出C点坐标:
∵C(3a,a),D(3a,-3a+24),∴CF=3a,CD=-3a+24-a=-4a+24。
∵矩形CDEF的面积为60,∴S矩形CDEF=CF?CD=3a×(-4a+24)=60,解得a=1或a=5
当a=1是,3a=3,故C(3,1);当a=5时,3a=15,故C(15,5)。
综上所述C点坐标为:C(3,1)或C(15,5)。

据专家权威分析,试题“已知,如图,在平面直角坐标系内,点A的坐标为(0,24),经过原点..”主要考查你对  一次函数的定义,正比例函数的定义,正比例函数的图像  等考点的理解。关于这些考点的“档案”如下:

一次函数的定义正比例函数的定义正比例函数的图像

考点名称:一次函数的定义

  • 一次函数的定义:
    在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k、b为常数,k≠0),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。
    ①正比例函数是一次函数,但一次函数不一定是正比例函数;
    ②一般情况下,一次函数的自变量的取值范围时全体实数;
    ③如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数。

  • 一次函数基本性质:
    1.在正比例函数时,x与y的商一定(x≠0)。在反比例函数时,x与y的积一定。
    在y=kx+b(k,b为常数,k≠0)中,当x增大m时,函数值y则增大km,反之,当x减少m时,函数值y则减少km。

    2.当x=0时,b为一次函数图像与y轴交点的纵坐标,该点的坐标为(0,b)。

    3.当b=0时,一次函数变为正比例函数。当然正比例函数为特殊的一次函数。

    4.在两个一次函数表达式中:
    当两个一次函数表达式中的k相同,b也相同时,则这两个一次函数的图像重合;
    当两个一次函数表达式中的k相同,b不相同时,则这两个一次函数的图像平行;
    当两个一次函数表达式中的k不相同,b不相同时,则这两个一次函数的图像相交;
    当两个一次函数表达式中的k不相同,b相同时,则这两个一次函数图像交于y轴上的同一点(0,b);
    当两个一次函数表达式中的k互为负倒数时,则这两个一次函数图像互相垂直。

    5.两个一次函数(y1=k1x+b1,y2=k2x+b2)相乘时(k≠0),得到的的新函数为二次函数,
    该函数的对称轴为-(k2b1+k1b2)/(2k1k2);
    当k1,k2正负相同时,二次函数开口向上;
    当k1,k2正负相反时,二次函数开口向下。
    二次函数与y轴交点为(0,b2b1)。

    6.两个一次函数(y1=ax+b,y2=cx+d)之比,得到的新函数y3=(ax+b)/(cx+d)为反比例函数,渐近线为x=-b/a,y=c/a。

  • 一次函数的判定:
    ①判断一个函数是否是一次函数,就是判断它是否能化成y=kx+b的形式;
    ②当k≠0,b=0时,这个函数即是k≠0一次函数,k≠0又是正比例函数;
    ③当k=0,b≠0时,这个函数不是一次函数;
    ④一次函数的一般形式是关于x的一次二项式,它可以转化为含x、y的二元一次方程。

考点名称:正比例函数的定义

  • 正比例函数定义:
    一般地,形如y=kx(k是常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数。
    正比例函数属于一次函数,但一次函数却不一定是正比例函数。
    正比例函数是一次函数的特殊形式,即一次函数y=kx+b中,若b=0,即所谓“y轴上的截距”为零,则为正比例函数。
    正比例函数的关系式表示为:y=kx(k为比例系数)
    当k>0时(一三象限),k越大,图像与y轴的距离越近。函数值y随着自变量x的增大而增大。
    当k<0时(二四象限),k越小,图像与y轴的距离越近。自变量x的值增大时,y的值则逐渐减小。

  • 正比例函数性质:
    定义域
    R(实数集)

    值域
    R(实数集)

    奇偶性
    奇函数

    单调性
    当k>0时,图像位于第一、三象限,从左往右,y随x的增大而增大(单调递增),为增函数;
    当k<0时,图像位于第二、四象限,从左往右,y随x的增大而减小(单调递减),为减函数。

    周期性
    不是周期函数。

    对称性
    对称点:关于原点成中心对称
    对称轴:自身所在直线;自身所在直线的垂直平分线

考点名称:正比例函数的图像

  • 图象:一条经过原点的直线。
    性质:
    (1)当k>0时,y随x的增大而增大;
    (2)当k<0时,y随x的增大而减小。
    1、在x允许的范围内取一个值,根据解析式求出y的值;
    2、根据第一步求的x、y的值描出点;
    3、作出第二步描出的点和原点的直线(因为两点确定一直线)。

  • <?xml:namespace prefix = "v" ns = "urn:schemas-microsoft-com:vml" />正比例函数的图像:
     <?xml:namespace prefix = "o" ns = "urn:schemas-microsoft-com:office:office" />



http://www.00-edu.com/ks/shuxue/2/65/2019-03-20/874901.html十二生肖
十二星座