零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一次函数的图像 > 正文 返回 打印

已知一次函数与反比例函数的图象都经过(-2,-1)和(n,2)两点.求这两个函数的关系式.-数学

[db:作者]  2019-03-24 00:00:00  零零社区

题文

已知一次函数与反比例函数的图象都经过(-2,-1)和(n,2)两点.求这两个函数的关系式.
题型:解答题  难度:中档

答案

①设反比例函数为y=
m
x

则m=-2×(-1)=2,
∴反比例函数的表达式为y=
2
x

②∵(n,2)在反比例函数上,
∴n=2÷2=1,
设一次函数为y=kx+b,
因为图象经过(-2,-1)(1,2)两点,

-2k+b=-1
k+b=2

解得

k=1
b=1

∴一次函数为y=x+1.

据专家权威分析,试题“已知一次函数与反比例函数的图象都经过(-2,-1)和(n,2)两点.求这..”主要考查你对  一次函数的图像,求反比例函数的解析式及反比例函数的应用  等考点的理解。关于这些考点的“档案”如下:

一次函数的图像求反比例函数的解析式及反比例函数的应用

考点名称:一次函数的图像

  • 函数不是数,它是指某一变化过程中两个变量之间的关系
    一次函数的图象:一条直线,过(0,b),(,0)两点。

  • 性质:
    (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
    (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

    k,b决定函数图像的位置:
    y=kx时,y与x成正比例:
    当k>0时,直线必通过第一、三象限,y随x的增大而增大;
    当k<0时,直线必通过第二、四象限,y随x的增大而减小。
    y=kx+b时:
    当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
    当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
    当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
    当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
    当b>0时,直线必通过第一、二象限;
    当b<0时,直线必通过第三、四象限。
    特别地,当b=0时,直线经过原点O(0,0)。
    这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
    当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。

考点名称:求反比例函数的解析式及反比例函数的应用

  • 反比例函数解析式的确定方法:
    由于在反比例函数关系式 :y= 中,只有一个待定系数k,确定了k的值,也就确定了反比例函数。因此,只需给出一组x、y的对应值或图象上一点的坐标,代入中即可求出k的值,从而确定反比例函数的关系式。但在实际求反比例函数的解析式时,应该具体问题具体分析。

    反比例函数的应用:
    建立函数模型,解决实际问题。

  • 用待定系数法求反比例函数关系式的一般步骤是:
    ①设所求的反比例函数为:y= (k≠0);
    ②根据已知条件(自变量与函数的对应值)列出含k的方程;
    ③由代人法解待定系数k的值;
    ④把k值代人函数关系式y= 中。

    反比例函数应用一般步骤:
    ①审题;
    ②求出反比例函数的关系式;
    ③求出问题的答案,作答。



http://www.00-edu.com/ks/shuxue/2/66/2019-03-24/881200.html十二生肖
十二星座