零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一次函数的图像 > 正文 返回 打印

先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).在抛物线y=-x2+2x-数学

[db:作者]  2019-03-24 00:00:00  零零社区

题文

先阅读以下材料,然后解答问题:
材料:将二次函数y=-x2+2x+3的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变).
在抛物线y=-x2+2x+3图象上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到A′(-1,3),再向下平移2个单位得到A″(-1,1);点B向左平移1个单位得到B′(0,4),再向下平移2个单位得到B″(0,2).
设平移后的抛物线的解析式为y=-x2+bx+c.则点A″(-1,1),B″(0,2)在抛物线上.可得:

-1-b+c=1
c=2
,解得:

b=0
c=2
.所以平移后的抛物线的解析式为:y=-x2+2.
根据以上信息解答下列问题:
将直线y=2x-3向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式.
题型:解答题  难度:中档

答案

在直线y=2x-3上任取一点A(0,-3),由题意知A向右平移3个单位,再向上平移1个单位得到A′(3,-2),
设平移后的解析式为y=2x+b,
则A′(3,-2)在y=2x+b的解析式上,
-2=2×3+b,
解得:b=-8,
所以平移后的直线的解析式为y=2x-8.

据专家权威分析,试题“先阅读以下材料,然后解答问题:材料:将二次函数y=-x2+2x+3的图象..”主要考查你对  一次函数的图像,二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

一次函数的图像二次函数的图像

考点名称:一次函数的图像

  • 函数不是数,它是指某一变化过程中两个变量之间的关系
    一次函数的图象:一条直线,过(0,b),(,0)两点。

  • 性质:
    (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
    (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

    k,b决定函数图像的位置:
    y=kx时,y与x成正比例:
    当k>0时,直线必通过第一、三象限,y随x的增大而增大;
    当k<0时,直线必通过第二、四象限,y随x的增大而减小。
    y=kx+b时:
    当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
    当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
    当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
    当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
    当b>0时,直线必通过第一、二象限;
    当b<0时,直线必通过第三、四象限。
    特别地,当b=0时,直线经过原点O(0,0)。
    这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
    当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。

考点名称:二次函数的图像

  • 二次函数的图像
    是一条关于对称的曲线,这条曲线叫抛物线。
    抛物线的主要特征:
    ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
    ②有对称轴;
    ③有顶点;
    ④c 表示抛物线与y轴的交点坐标:(0,c)。

  • 二次函数图像性质:
    轴对称:

    二次函数图像是轴对称图形。对称轴为直线x=-b/2a
    对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
    特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
    a,b同号,对称轴在y轴左侧
    b=0,对称轴是y轴
    a,b异号,对称轴在y轴右侧

    顶点:
    二次函数图像有一个顶点P,坐标为P ( h,k )
    当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
    h=-b/2a, k=(4ac-b^2)/4a。

    开口:
    二次项系数a决定二次函数图像的开口方向和大小。
    当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
    |a|越大,则二次函数图像的开口越小。

  • 决定对称轴位置的因素:
    一次项系数b和二次项系数a共同决定对称轴的位置。
    当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
    当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
    可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
    事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

    决定与y轴交点的因素:

    常数项c决定二次函数图像与y轴交点。
    二次函数图像与y轴交于(0,C)
    注意:顶点坐标为(h,k), 与y轴交于(0,C)。

    与x轴交点个数:
    a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
    k=0时,二次函数图像与x轴只有1个交点。
    a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
    当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
    当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
    当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。



http://www.00-edu.com/ks/shuxue/2/66/2019-03-24/881763.html十二生肖
十二星座