题文
答案
据专家权威分析,试题“若直线y=kx+b平行直线y=3x+4,且过点(1,-2),则将y=kx+b向下平移..”主要考查你对 一次函数的图像,相交线 等考点的理解。关于这些考点的“档案”如下:
一次函数的图像相交线
考点名称:一次函数的图像
性质:(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。k,b决定函数图像的位置:y=kx时,y与x成正比例:当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。y=kx+b时:当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;当 k>0,b<0,这时此函数的图象经过第一、三、四象限;当 k<0,b>0,这时此函数的图象经过第一、二、四象限;当 k<0,b<0,这时此函数的图象经过第二、三、四象限。当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。特别地,当b=0时,直线经过原点O(0,0)。这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的
考点名称:相交线
相交线性质:∠1和∠2有一条公共边OC,它们的另一边互为反向延长线(∠1和∠2互补),具有这种关系的两个角,互为邻补角。∠1和∠3有一个公共顶点O,并且∠1的两边分别是∠3的两边的反向延长线,具有这种位置关系的两个角,互为对顶角。∠1与∠2互补,∠3与∠2互补,由“同角的补角相等”,可以得出∠1=∠3.类似地,∠2=∠4.这样,我们得到了对顶角的性质:对顶角相等。
垂线: 垂直是相交的一种特殊情形,两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足。 经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 过一点有且只有一条直线与已知直线垂直。连接直线外一点与直线上各点的所有线段中,垂线段最短. 简单说成:垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。