题文
北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资公司为筹集善款,对其日本原产品进行大幅度销售,有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表: |
|
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并求出x的取值范围; (2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来; (3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店型B产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大? |
题型:解答题 难度:偏难
答案
解:依题意,甲店B型产品有(70-x)件,乙店A型有(40-x)件,B型有(x-10)件, 则(1)W=200x+170(70-x)+160(40-x)+150(x-10) =20x+16800, 由解得10≤x≤40; (2)由W=20x+16800≥17560, ∴x≥38, ∴38≤x≤40,x=38,39,40, ∴有三种不同的分配方案, ①x=38时,甲店A型38件,B型32件,乙店A型2件,B型28件; ②x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件; ③x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件; (3)依题意:W=(200-a)x+170(70-x)+160(40-x)+150(x-10) =(20-a)x+16800, ①当0<a<20时,x=40,即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大; ②当a=20时,10≤x≤40,符合题意的各种方案,使总利润都一样; ③当20<a<30时,x=10,即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大。 |
据专家权威分析,试题“北京时间2011年3月11日13时46分,日本发生9.0级特大地震,某日资..”主要考查你对 求一次函数的解析式及一次函数的应用,一元一次不等式的应用 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用一元一次不等式的应用
考点名称:求一次函数的解析式及一次函数的应用 考点名称:一元一次不等式的应用
|