题文
答案
解:(1)∵P(x,y)在第一象限,∴x>0,y>0,作PM⊥OA于M,则PM=y,∵x+y=8,∴y=8-x,∴S=OA·PM=×10(8-x),即S=40-5x,x的取值范围是0<x<8;(2)如图:
据专家权威分析,试题“已知点P(x,y)是第一象限内的点,且x+y=8,点A的坐标为(10,0),..”主要考查你对 求一次函数的解析式及一次函数的应用,一次函数的图像 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用一次函数的图像
考点名称:求一次函数的解析式及一次函数的应用
用待定系数法求一次函数解析式的四个步骤:第一步(设):设出函数的一般形式。(称一次函数通式)第二步(代):代入解析式得出方程或方程组。第三步(求):通过列方程或方程组求出待定系数k,b的值。第四步(写):写出该函数的解析式。 一次函数的应用涉及问题:一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数
三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。(2)理清题意是采用分段函数解决问题的关键。生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)
一次函数应用常用公式:1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:(x1+x2)/23.求与y轴平行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)(x,y)为 + ,+(正,正)时该点在第一象限(x,y)为 - ,+(负,正)时该点在第二象限(x,y)为 - ,-(负,负)时该点在第三象限(x,y)为 + ,-(正,负)时该点在第四象限8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b29.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-110.y=k(x-n)+b就是直线向右平移n个单位y=k(x+n)+b就是直线向左平移n个单位y=kx+b+n就是向上平移n个单位y=kx+b-n就是向下平移n个单位口决:左加右减相对于x,上加下减相对于b。11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:一次函数的图像
性质:(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。k,b决定函数图像的位置:y=kx时,y与x成正比例:当k>0时,直线必通过第一、三象限,y随x的增大而增大;当k<0时,直线必通过第二、四象限,y随x的增大而减小。y=kx+b时:当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;当 k>0,b<0,这时此函数的图象经过第一、三、四象限;当 k<0,b>0,这时此函数的图象经过第一、二、四象限;当 k<0,b<0,这时此函数的图象经过第二、三、四象限。当b>0时,直线必通过第一、二象限;当b<0时,直线必通过第三、四象限。特别地,当b=0时,直线经过原点O(0,0)。这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。
特殊位置关系:当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的