零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求一次函数的解析式及一次函数的应用 > 正文 返回 打印

(1)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴O表示这条公路,原点O为零千米路标(如图1),并作如下约定:①速度v>0,表示汽车向数轴正方向行驶;-七年级数学

[db:作者]  2019-03-24 00:00:00  互联网

题文

(1)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们用数轴O表示这条公路,原点O为零千米路标(如图1),并作如下约定:
①速度v>0,表示汽车向数轴正方向行驶;速度v<0,表示汽车向数轴负方向行驶;速度v=0,表示汽车静止。
②汽车位置在数轴上的坐标s>0,表示汽车位于零千米路标的右侧;汽车位置在数轴上的坐标s<0,表示汽车位于零千米路标的左侧;汽车位置在数轴上的坐标s=0,表示汽车恰好位于零千米路标处,遵照上述约定,将这两辆汽车在公路上匀速行驶的情况,以一次函数图象的形式画在了同一直角坐标系中,如图2。
请解答下列问题:
①就这两个一次函数图像所反映的两汽车在这条公路上行驶的状况填写如下的表格:
  行驶方向 速度的大小(km/h) 出发前的位置
甲车      
乙车      
②甲乙两车能否相遇?如能相遇,求相遇时的时刻及在公路上的位置;如不能相遇,请说明理由。
(2)在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余的高度y(cm)与燃烧时间x(分钟)的关系如下图所示,根据图像提供的信息解答下列问题:
①指出两根蜡烛燃烧前的高度;
②分别求出甲、乙两根蜡烛燃烧时y与x之间的函数关系式;
③x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等。
题型:解答题  难度:偏难

答案

解:(1)①甲车:x轴负方向(向左),-40,零千米路标右侧190千米;
乙车:x轴正方向(向右),50,零千米路标左侧80千米处。
②甲乙两车相遇,设经过t小时两车相遇,
由两车相遇时的路程相等得:50t-80=-40t+190,解得t=3
代入甲车行驶的一次函数式中得:s=-40×3+190,解得s=70
所以经过3小时两车相遇,相遇在零千米路标右侧70千米处。
(2)①甲:30cm;乙:25cm
②甲:
乙:
③由,解得:x=10
答:x为10分时,甲、乙两根蜡烛在燃烧过程中的高度相等。

据专家权威分析,试题“(1)甲乙两辆汽车在一条公路上匀速行驶,为了确定汽车的位置,我们..”主要考查你对  求一次函数的解析式及一次函数的应用,一次函数的图像  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用一次函数的图像

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:一次函数的图像

  • 函数不是数,它是指某一变化过程中两个变量之间的关系
    一次函数的图象:一条直线,过(0,b),(,0)两点。

  • 性质:
    (1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。
    (2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

    k,b决定函数图像的位置:
    y=kx时,y与x成正比例:
    当k>0时,直线必通过第一、三象限,y随x的增大而增大;
    当k<0时,直线必通过第二、四象限,y随x的增大而减小。
    y=kx+b时:
    当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;
    当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
    当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
    当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
    当b>0时,直线必通过第一、二象限;
    当b<0时,直线必通过第三、四象限。
    特别地,当b=0时,直线经过原点O(0,0)。
    这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
    当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。



http://www.00-edu.com/ks/shuxue/2/67/2019-03-24/887027.html十二生肖
十二星座