题文
答案
据专家权威分析,试题“阅读下面的材料,并解答问题:(1)问题1:已知正数,有下列命题若a+..”主要考查你对 求一次函数的解析式及一次函数的应用,探索规律 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用探索规律
考点名称:求一次函数的解析式及一次函数的应用
用待定系数法求一次函数解析式的四个步骤:第一步(设):设出函数的一般形式。(称一次函数通式)第二步(代):代入解析式得出方程或方程组。第三步(求):通过列方程或方程组求出待定系数k,b的值。第四步(写):写出该函数的解析式。 一次函数的应用涉及问题:一、分段函数问题分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际。
二、函数的多变量问题解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数
三、概括整合(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。(2)理清题意是采用分段函数解决问题的关键。生活中的应用:1.当时间t一定,距离s是速度v的一次函数。s=vt。2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)
一次函数应用常用公式:1.求函数图像的k值:(y1-y2)/(x1-x2)2.求与x轴平行线段的中点:(x1+x2)/23.求与y轴平行线段的中点:(y1+y2)/24.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]5.求两个一次函数式图像交点坐标:解两函数式两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)(x,y)为 + ,+(正,正)时该点在第一象限(x,y)为 - ,+(负,正)时该点在第二象限(x,y)为 - ,-(负,负)时该点在第三象限(x,y)为 + ,-(正,负)时该点在第四象限8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b29.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-110.y=k(x-n)+b就是直线向右平移n个单位y=k(x+n)+b就是直线向左平移n个单位y=kx+b+n就是向上平移n个单位y=kx+b-n就是向下平移n个单位口决:左加右减相对于x,上加下减相对于b。11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)
考点名称:探索规律
探索规律题题型和解题思路:1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;探索结论型题的一般解题思路是:(1)从特殊情形入手,发现一般性的结论;(2)在一般的情况下,证明猜想的正确性;(3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。探索存在型题的结论只有两种可能:存在或不存在;存在型问题的解题步骤是:①假设存在;②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。 解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。