题文
题型:解答题 难度:中档
答案
解:(1)∵点A(-1,m)在第二象限内, ∴AB=m,OB=1, ∴即:,解得m=4, ∴A(-1,4), ∵点A(-1,4),在反比例函数的图像上, ∴4=,解得k=-4, ∵反比例函数为, 又∵反比例函数的图像经过C(n,-2), ∴-2=,解得n=2, ∴C(2,-2), ∵直线y=ax+b过点A(-1,4),C(2,-2), ∴解方程组得, ∴直线y=ax+b的解析式为;y=-2x+2; (2)当y=0时,即-2x+2=解得x=1,即点M(1,0), 在Rt△ABM中, ∵AB=4,BM=BO+OM=1+1=2, 由勾股定理得AM=。 |
据专家权威分析,试题“如图,已知反比例函数y=的图像经过第二象限内的点A(-1,m),AB⊥x..”主要考查你对 求一次函数的解析式及一次函数的应用,求反比例函数的解析式及反比例函数的应用,勾股定理 等考点的理解。关于这些考点的“档案”如下:
求一次函数的解析式及一次函数的应用求反比例函数的解析式及反比例函数的应用勾股定理
考点名称:求一次函数的解析式及一次函数的应用 考点名称:求反比例函数的解析式及反比例函数的应用 考点名称:勾股定理
|