零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求一次函数的解析式及一次函数的应用 > 正文 返回 打印

星期天,小亮与爷爷进行登山锻炼,如图所示,表示小亮与爷爷沿相同的登山路线同时从山脚出发的登山锻炼过程,各自行进的路程随时间变化的图象,请你根据图中所提供的信息,解-八年级数学

[db:作者]  2019-03-24 00:00:00  互联网

题文

星期天,小亮与爷爷进行登山锻炼,如图所示,表示小亮与爷爷沿相同的登山路线同时从山脚出发的登山锻炼过程,各自行进的路程随时间变化的图象,请你根据图中所提供的信息,解答下列问题:
(1)请你分别写出小亮和爷爷登山过程中路程S1(千米)、S2(千米)、与时间t (小时)之间的函数关系(不必写出自变量t的取值范围),S1= _________ ,S2= _________
(2)当小亮到达山顶时,爷爷行进到山路上某点A处,则A点到达山顶的路程为 _________ 千米;
(3)已知小亮在山顶休息1小时,沿原路下山,在B处与爷爷相遇,此时B点到山顶的路程为1.5千米,相遇后,他们各自沿原来的路线下山和上山,问当爷爷到达山顶时,小亮离山脚下的出发点还有多远?小亮的整个登山过程用了几小时?
题型:解答题  难度:中档

答案

解:(1)由题意:
S1=k1t,S2=k2t,
从图中,当t=2时,S1=6,
当t=3时,S2=6,
可以求出k1=3,k2=2
∴S1=3t,S2=2t;
(2)S1=3t,S1=12,
则t=4,
这时爷爷走了S2=2t=2×4=8(千米)
所以点A到达山顶的路程为12-8=4千米;
(3)因为S1=3t,当S1=12千米时,t=4(小时),
由于小亮休息了1小时,
所以返回时已过了5小时,而爷爷距离山顶为1.5千米时,
即爷爷走了12-1.5=10.5千米,
所需时间为10.5÷2=5.25小时.
所以小亮在(5.25-5)小时走了1.5千米,
所以小亮返回时的速度为1.5÷(5.25-5)=6(千米/小时)
即爷爷到达山顶时,
小亮走了6-5.25+0.25=1小时,
即离山脚下的出发点还有12-6×1=6(千米),
所以小亮的整个登山过程为4+1+2=7(小时)。

据专家权威分析,试题“星期天,小亮与爷爷进行登山锻炼,如图所示,表示小亮与爷爷沿相..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)



http://www.00-edu.com/ks/shuxue/2/67/2019-03-24/888416.html十二生肖
十二星座