零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求一次函数的解析式及一次函数的应用 > 正文 返回 打印

如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE.(1)求OD的长;(2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明-八年级数学

[db:作者]  2019-03-24 00:00:00  互联网

题文

如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合,点C移到点F位置,折痕为DE.
(1)求OD的长;
(2)连接BE,四边形OEBD是什么特殊四边形?请运用所学知识进行说明;
(3)以O点为坐标原点,OC、OA 所在的直线分别为x轴、y轴(如图2),求直线EF的函数表达式.
题型:解答题  难度:中档

答案

解:(1)如图1,
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴OD=DB,
设OD=x,则DB=x,AD=8﹣x,
在Rt△AOD中,OA=4,
∴OD2=AD2+OA2,即x2=(8﹣x)2+42,解得x=5,
所以OD的长为5;

(2)四边形OEBD是菱形.理由如下:
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴∠2=∠1,DB=DO,BE=EO,
而∠1=∠3,
∴∠2=∠3,
∴OD=OE,
∴OD=DB=BE=OE,
∴四边形OEBD是菱形;
(3)过F作FG⊥x轴于G,如图2,
∵矩形OABC对折,使点B与点O重合,点C移到点F位置,
∴OE=OD=5,EC=EF=3,OF=BC=4,∠OFE=∠B=90°,
∴E点坐标为(5,0);
OE·GF=OF·EF,
∴GF==
在Rt△OFG中,OG===
∴F点坐标为(,﹣),
设直线EF的解析式为y=kx+b,
把E(5,0)和F(,﹣)代入得,5k+b=0,k+b=﹣,解得k=,b=﹣
∴直线EF的函数表达式为y=x﹣

据专家权威分析,试题“如图1,矩形OABC中,AB=8,OA=4,把矩形OABC对折,使点B与点O重合..”主要考查你对  求一次函数的解析式及一次函数的应用,轴对称,菱形,菱形的性质,菱形的判定  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用轴对称菱形,菱形的性质,菱形的判定

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:轴对称

  • 轴对称的定义:
    把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

  • 轴对称的性质:
    (1)对应点所连的线段被对称轴垂直平分;
    (2)对应线段相等,对应角相等;
    (3)关于某直线对称的两个图形是全等图形。

  • 轴对称的判定:
    如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
    这样就得到了以下性质:
    1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
    2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
    3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
    4.对称轴是到线段两端距离相等的点的集合。

    轴对称作用:
    可以通过对称轴的一边从而画出另一边。
    可以通过画对称轴得出的两个图形全等。
    扩展到轴对称的应用以及函数图像的意义。

    轴对称的应用:
    关于平面直角坐标系的X,Y对称意义
    如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
    相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

    关于二次函数图像的对称轴公式(也叫做轴对称公式 )
    设二次函数的解析式是 y=ax2+bx+c
    则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

    在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
    譬如,等腰三角形经常添设顶角平分线;
    矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
    正方形,菱形问题经常添设对角线等等。
    另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
    或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

考点名称:菱形,菱形的性质,菱形的判定

  • 菱形的定义:
    在一个平面内,有一组邻边相等的平行四边形是菱形。

  • 菱形的性质:
    ①菱形具有平行四边形的一切性质;
    ②菱形的对角线互相垂直且平分,并且每一条对角线平分一组对角;
    ③菱形的四条边都相等;
    ④菱形既是轴对称图形(两条对称轴分别是其两条对角线所在的直线),也是中心对称图形(对称中心是其重心,即两对角线的交点);
    ⑤在有一个角是60°角的菱形中,较短的对角线等于边长,较长的对角线是较短的对角线的根号3倍。

  • 菱形的判定:
    在同一平面内,
    (1)定义:有一组邻边相等的平行四边形是菱形
    (2)定理1:四边都相等的四边形是菱形
    (3)定理2:对角线互相垂直的平行四边形是菱形
    菱形是在平行四边形的前提下定义的,首先它是平行四边形,而且是特殊的平行四边形,特殊之处就是“有一组邻边相等”,因而增加了一些特殊的性质和判定方法。
    菱形的面积:S菱形=底边长×高=两条对角线乘积的一半。



http://www.00-edu.com/ks/shuxue/2/67/2019-03-24/889273.html十二生肖
十二星座