零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求一次函数的解析式及一次函数的应用 > 正文 返回 打印

如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将Rt△ADC绕点C顺时针旋转90°,点A旋转后的位置为点E,点D旋转后的位置为点F.以C为原点,以BC所在直线为x轴,以-数学

[db:作者]  2019-03-24 00:00:00  互联网

题文

如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将Rt△ADC绕点C顺时针旋转90°,点A旋转后的位置为点E,点D旋转后的位置为点F.以C为原点,以BC所在直线为x轴,以过点C垂直于BC的直线为y轴,建立如图②的平面直角坐标系.

(1)求直线AE的解析式;
(2)将Rt△EFC沿x轴的负半轴平行移动,如图③.设OC=x(0<x≤9),Rt△EFC与Rt△ABO的重叠部分面积为s;求当x=1与x=8时,s的值;
(3)在(2)的条件下s是否存在最大值?若存在,求出这个最大值及此时x的值;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)AB=3,BC=6,根据旋转的性质可知:A(-6,3),E(3,6),
设函数解析式为y=kx+b,
把A(-6,3),E(3,6)分别代入解析式得,

-6k+b=3
3k+b=6

解得,

k=
1
3
b=5

直线AE解析式为:y=
1
3
x+5.
(2)①当x=1时,如图1,重叠部分为△POC,

可得:Rt△POC∽Rt△BOA,
s
S△AOB
=(
OC
AO
)2,
即:
s
9
=(
1
3

5
)2,
解得:S=
1
5

②当x=8时,如图2,重叠部分为梯形FQAB,
可得:OF=5,BF=1,FQ=2.5,
∴S=
1
2
(FQ+AB)?BF=
1
2
(2.5+3)×1=
11
4

(3)解法一:

①显然,画图分析,从图中可以看出:当0<x≤3与7.5<x≤9时,不会出现s的最大值.
②当3<x≤6时,由图3可知:当x=6时,s最大.
此时,S△OBN=
36
5
,S△OMF=
9
4

∴S=S△OBN-S△OMF=
36
5
-
9
4
=
99
20

③当6<x≤7.5时,如图4,S△OCN=
x2
5
,S△OFM=
(x-3)2
4
,S△BCG=(x-6)2.
∴S=S△OCN-S△OFM-S△BCG=
x2
5
-
(x-3)2
4
-(x-6)2,
∴S=-
21
20
x2+
27
2
x-
153
4
=-
21
20
(x-
45
7
)2+
36
7

∴当x=
45
7
时,S有最大值,S最大=
36
7

综合得:当x=
45
7
时,存在S的最大值,S最大=
36
7

解法二:
同解法一③可得:S=

x2
5
(0<x≤3)
-
1
20
x2+
3
2
x-
9
4
(3<x≤6)
-
21
20
(x-
45
7
)2+
36
7
(6<x<7.5)
-
1
4
x2+
3
2
x+
27
4
(7.5≤x≤9)

若0<x≤3,则当x=3时,S最大,最大值为
9
5

若3<x≤6,则当x=6时,S最大,最大值为
99
20

若6<x<7.5,则当x=
45
7
时,S最大,最大值为
36
7

若7.5≤x≤9,则当x=7.5时,S最大,最大值为
63
16

综合得:当x=
45
7
时,存在S的最大值,S最大=
36
7

据专家权威分析,试题“如图①,矩形ABCD被对角线AC分为两个直角三角形,AB=3,BC=6.现将..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)



http://www.00-edu.com/ks/shuxue/2/67/2019-03-24/893357.html十二生肖
十二星座