零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求一次函数的解析式及一次函数的应用 > 正文 返回 打印

如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=833,边AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D.(1)求点G的坐标;(2)求直线CD的解析式;(3)在直线CD上和平面内是否分别存-数学

[db:作者]  2019-03-24 00:00:00  互联网

题文

如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=
8

3
3
,边AB的垂直平分线CD分别与AB、x轴、y轴交于点C、G、D.
(1)求点G的坐标;
(2)求直线CD的解析式;
(3)在直线CD上和平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q得坐标;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)∵DC是AB垂直平分线,OA垂直AB,
∴G点为OB的中点,
∵OB=
8
3

3

∴G(
4
3

3
,0).

(2)过点C作CH⊥x轴于点H,
在Rt△ABO中,∠ABO=30°,OB=
8
3

3

∴cos30°=
AB
8
3

3
=

3
2

即AB=
8
3

3
×

3
2
=4,
又∵CD垂直平分AB,
∴BC=2,在Rt△CBH中,CH=
1
2
BC=1,BH=

3

∴OH=
8
3

3
-

3
=
5
3

3

∴C(
5
3

3
,-1),
∵∠DGO=60°,
∴OG=
1
2
OB=
4
3

3

∴OD=
4
3

3
tan60°=4,
∴D(0,4),
设直线CD的解析式为:y=kx+b,则

-1=
5
3

3
k+b
4=b
,解得:

k=-

3
b=4

∴y=-

3
x+4;

(3)存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形.
①如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形,

设QP交x轴于点E,在Rt△OEP中,OP=4,∠OPE=30°,
∴OE=2,PE=2

3

∴Q(2,4-2

3
).

②如图,当OD=DQ=QP=OP=4时,四边形DOPQ为菱形,
延长QP交x轴于点F,在Rt△POF中,OP=4,∠FPO=30°,
∴OF=2,PF=2

3

∴QF=4+2

3

∴Q(-2,4+2

3
).


③如图,当PD=DQ=QO=OP=
4
3

3
时,四边形DOPQ为菱形,在Rt△DQM中,∠MDQ=30°,
∴MQ=
1
2
DQ=
2

3
3

∴Q(
2

3
3
,2).

④如图,当OD=OQ=QP=DP=4时,四边形DOQP为菱形,
设PQ交x轴于点N,此时∠NOQ=∠ODQ=30°,
在Rt△ONQ中,NQ=
1
2
OQ=2,

∴ON=2

3

∴Q(2

3
,-2);
综上所述,满足条件的点Q共有四点:(2,4-2

3
),(-2,4+2

3
),(
2

3
3
,2),(2

3
,-2);

据专家权威分析,试题“如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=833,边AB的垂直平分线..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)



http://www.00-edu.com/ks/shuxue/2/67/2019-03-24/894349.html十二生肖
十二星座