零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 求一次函数的解析式及一次函数的应用 > 正文 返回 打印

加试题(1)已知a+a-1=3,则a2a4-a2+1______.(2)如图,在△ABC中,AB=AC,D、E、F分别在BC、AC、AB上,BD=CE,CD=BF,则∠EDF=______A、90°-12∠AB、90°-∠AC、180°-∠AD、180°-2∠A-数学

[db:作者]  2019-03-24 00:00:00  互联网

题文

加试题
(1)已知a+a-1=3,则
a2
a4-a2+1
______.
(2)如图,在△ABC中,AB=AC,D、E、F分别在BC、AC、AB上,BD=CE,CD=BF,则∠EDF=______
A、90°-
1
2
∠A B、90°-∠A C、180°-∠A D、180°-2∠A
(3)安岳A地有柠檬100吨,B地有柠檬80吨,计划送往甲、乙两厂深加工,甲厂需要柠檬110吨,乙厂需要柠檬70吨,从A、B两地到甲、乙两厂的路程和运费如下表:
路程(千米)运费(元/吨.千米)
A地B地A地B地
甲厂20151212
乙厂2520108
①若A地运往甲厂柠檬x吨,请写出将所有柠檬运往甲、乙两厂的总运费y(元)与x吨的函数关系式;
②当A、B两地运往甲、乙两厂多少吨柠檬时,总运费最少?最少运费是多少?
题型:解答题  难度:中档

答案

(1)∵a+a-1=3,
∴a2+
1
a2
=7.
a2
a4-a2+1
的倒数为:a2+
1
a2
-1,
∴a2+
1
a2
-1=7-1=6,
∴原式的值为:
1
6

故答案为:
1
6

(2)∵AB=AC,
∴∠B=∠C.
在△△BDE和△CED中,

BD=CE
∠B=∠C
BF=CD

∴△BDE≌△CED(SAS),
∴∠BFD=∠CDE.
∵∠FDC=∠B+∠BFD,
∴∠FDC-∠EDC=∠B,
即∠FDE=∠B,
∵∠B+∠C=180°-∠A,
∴∠B=90°-
1
2
∠A.
∠FDE=90°-
1
2
∠A.
故答案为:90°-
1
2
∠A.
(3)①设A地运往甲厂柠檬x吨,则A地运往乙厂(100-x)吨,B地运往甲厂(110-x)吨,B地运往乙厂(x-30)吨,由题意得:
y=20×12x+10×25(100-x)+12×15(110-x)+20×8(x-30),
y=-30x+40000,
②由题意,得

x≥0
100-x≥0
110-x≥0
x-30≥0

解得:30≤x≤100.
∵y=-30x+40000,
∴k=-30<0,
∴y随x的增大而减小,
∴当x=100时,y最小=28000.
∴设A地运往甲厂柠檬100吨,则A地运往乙厂0吨,B地运往甲厂10吨,B地运往乙厂70吨.其运费最少为28000元.

据专家权威分析,试题“加试题(1)已知a+a-1=3,则a2a4-a2+1______.(2)如图,在△ABC中,A..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)



http://www.00-edu.com/ks/shuxue/2/67/2019-03-24/894561.html十二生肖
十二星座