零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 一次函数与一元一次不等式(一元一次方程) > 正文 返回 打印

某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需交纳行李费,已知行李费y(元)是行李质量x(千克)的一次函数.现在黄明带了60千克的行李,交了行李费-八年级数学

[db:作者]  2019-03-25 00:00:00  零零社区

题文

某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需交纳行李费,已知行李费y(元)是行李质量x(千克)的一次函数.现在黄明带了60千克的行李,交了行李费5元,王华带了78千克的行李,交了8元.
(1)写出y与x之间的函数关系式;
(2)旅客最多可以免费携带多少千克的行李?
题型:解答题  难度:中档

答案

解:(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b,
由题意得 ,解得k=,b=﹣5,
∴该一次函数关系式为
(2)∵,解得x≤30,
∴旅客最多可免费携带30千克的行李.
答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为
(2)旅客最多可免费携带30千克的行李.

据专家权威分析,试题“某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过..”主要考查你对  一次函数与一元一次不等式(一元一次方程),求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

一次函数与一元一次不等式(一元一次方程)求一次函数的解析式及一次函数的应用

考点名称:一次函数与一元一次不等式(一元一次方程)

  • 一次函数和方程关系:
    一次函数 一元一次方程
    形式 y=kx+b ax+b=0
    内容 表示的是一对(x,y)之间的关系,
    它有无数对解
    表示的是未知数x的值,
    最多只有1个值
    相互关系 一次函数与x轴交点的横坐标就是相应的一元一次方程的根
    例如:
    y=4x+8与x轴的交点是(-2,0),
    则一元一次方程4x+8=0的根是x=-2。

    函数和不等式:
    解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
    从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
    对应一次函数y=kx+b,它与x轴交点为(-b/k,0)。
    当k>0时,不等式kx+b>0的解为:x>- b/k,不等式kx+b<0的解为:x<- b/k;
    当k<0的解为:不等式kx+b>0的解为:x<- b/k,不等式kx+b<0的解为:x>- b/k。

  • 一元一次不等式与一元一次方程、一次函数的关系:
    1.一元一次不等式ax+b>0(a≠0)是一次函数y=ax+b(a≠0)的函数值>0的情形;
    一元一次不等式ax+b<0(a≠0)是一次函数y=ax+b(a≠0)的函数值<0的情形。
    2.直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;
    使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集。
    3.一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值=0的情形;
    反之,使函数值y=0的x的取值就是方程ax+b=0(a≠0)的解。

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)



http://www.00-edu.com/ks/shuxue/2/68/2019-03-25/895327.html十二生肖
十二星座