零零教育信息网 首页 > 考试 > 数学 > 初中数学 > 零指数幂(负指数幂和指数为1) > 正文 返回 打印

下列计算错误的是[]A.(﹣2)0=1B.2a2﹣a2=a2C.6.5×10﹣2=0.0065D.a2b÷ab=a-七年级数学

[db:作者]  2019-03-25 00:00:00  零零社区

题文

下列计算错误的是
[     ]

 A.(﹣2)0=1
B.2a2﹣a2=a2
C.6.5×10﹣2=0.0065
D.a2b÷ab=a

题型:单选题  难度:偏易

答案

C

据专家权威分析,试题“下列计算错误的是[]A.(﹣2)0=1B.2a2﹣a2=a2C.6.5×10﹣2=0.0065D.a..”主要考查你对  零指数幂(负指数幂和指数为1),科学记数法和有效数字,合并同类项,整式的除法  等考点的理解。关于这些考点的“档案”如下:

零指数幂(负指数幂和指数为1)科学记数法和有效数字合并同类项整式的除法

考点名称:零指数幂(负指数幂和指数为1)

  • 零指数幂定义:任何不等于零的数的零次幂都等于1。
    负指数幂的定义:任何不等于零的数的-n(n为正整数)次幂,等于这个数的n次幂的倒数。
    指数为1:任何不等于零的数的1次幂,所得结果都等于这个数的本身。

考点名称:科学记数法和有效数字

  • 定义
    把一个大于10的数表示成a×10n的形式(其中a是整数数位只有一位的数,n是正整数),这种计数法叫做科学记数法。
    有效数字:
    从一个数的左边非0数字其,到末尾数字止,所有数字都是这个数的有效数字。

  • 科学记数法的特点:
    (1)简单:对于数目很大的数用科学记数法的形式表示起来又科学、又简单。
    (2)科学记数法的形式是由两个数的乘积组成的,其中一个因数为a(1≤a<10,a∈N*),另一个因数为10n(n是比原来数A的整数部分少1的正整数)。
    (3)用科学记数法表示数时,不改变数的符号,只是改变数的书写形式而已。

  • 速写法:
    对于10的指数大于0的情形,数出“除了第一位以外的数位”的个数,即代表0的个数。
    如1800000000000,除最高位1外尚有12位,故科学记数法写作1.8×1012或1.8E12
    10的指数小于0的情形,数出“非有效零的总数(第一个非零数字前的所有零的总数)”
    如0.00934593,第一位非零数字(有效数字)9前面有3个零,科学记数法写作9.34593×10-3或9.34593E-3。即第一位非零数字前的0的个数为n,就为10-n(n≥0)

    科学计数法的基本运算:
    数字很大的数,一般我们用科学记数法表示,
    例如6230000000000,我们可以用6.23×1012表示,
    而它含义从直面上看是将数字6.23中6后面的小数点向右移去12位。
    若将6.23×1012写成6.23E12
    即代表将数字6.23中6后面的 小数点向右移去12位,在记数中如
    1. 3×104+4×104=7×104可以写成3E4+4E4=7E4
    即 aEc+bEc=(a+b)Ec
    2. 4×104-7×104=-3×104可以写成4E4-7E4=-3E4
    即 aEc-bEc=(a-b)Ec
    3. 3000000×600000=1800000000000
    3e6×6e5=1.8e12
    即 aEM×bEN=abE(M+N)
    4. -60000÷3000=-20
    -6E4÷3E3=-2E1
    即 aEM÷bEN=a/bE(M-N)
    5.有关的一些推导
    (aEc)2=(aEc)(aEc)=a2E2c
    (aEc)3=(aEc)(aEc)(aEc)=a3E3c
    (aEc)n=anEnc
    a×10lgb=ab
    aElgb=ab

考点名称:合并同类项

  • 同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。
    合并同类项:把同类项合成一项,叫做合并同类项。

    说明
    1、如果两个单项式,它们所含的字母相同,并且各字母的指数也分别相同,那么就称这两个单项式为同类项。如2ab与-3ab,m2n与m2n都是同类项。特别地,所有的常数项也都是同类项。
    2、把多项式中的同类项合并成一项,叫做同类项的合并(或合并同类项)。
    同类项的合并应遵照法则进行:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
    3、合并同类项的理论依据
    其实,合并同类项法则是有其理论依据的。它所依据的就是大家早已熟知了的乘法分配律,a(b+c)=ab+ac。合并同类项实际上就是乘法分配律的逆向运用。即将同类项中的每一项都看成两个因数的积,由于各项中都含有相同的字母并且它们的指数也分别相同,故同类项中的每项都含有相同的因数。合并时将分配律逆向运用,用相同的那个因数去乘以各项中另一个因数的代数和。

  • 合并同类项的步骤:
    (1)准确的找出同类项;
    (2)逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变;
    (3)写出合并后的结果。

考点名称:整式的除法

  • 整式是有理式的一部分,在有理式中可以包含加,减,乘,除四种运算,但在整式中除数不能含有字母。单项式和多项式统称为整式。单项式相除,把它们的系数相除,同底数幂的幂相减,作为商的一个因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。

  • 整式的除法法则:
    1、同底数的幂相除:法则:同底数的幂相除,底数不变,指数相减。
    数学符号表示: (a≠0,m、n为正整数,并且m>n)
    2、两个单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
    3、多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。

  • 整式的除法运算:
    单项式÷单项式
    单项式相除,把系数、同底数幂分别相除后,作为商的因式;
    对于只在被除式中含有的字母,则连同它的指数一起作为商的一个因式。
    注:单项式除以单项式主要是通过转化为同底数幂的除法解决的。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
    说明:多项式(没有同类项)除以单项式,结果的项数与多项式的项数相同,不要漏项。

    多项式÷单项式
    多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。
    单项式除以多项式,用单项式除以多项式的每一项,再将所得的商相加并合并同类项。



http://www.00-edu.com/ks/shuxue/2/70/2019-03-25/900291.html十二生肖
十二星座